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Time course and functional neuroanatomy of speech segmentation in adults
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The present investigation was devoted to unraveling the time-course and brain regions involved in speech
segmentation, which is one of the first processes necessary for learning a new language in adults and infants.
A specific brain electrical pattern resembling the N400 language component was identified as an indicator of
speech segmentation of candidate words. This N400 trace was clearly elicited after a short exposure to the
words of the new language and showed a decrease in amplitude with longer exposure. Two brain regions
were observed to be active during this process: the posterior superior temporal gyrus and the superior part of
the ventral premotor cortex. We interpret these findings as evidence for the existence of an auditory–motor
interface that is responsible for isolating possible candidate words when learning a new language in adults.
© 2009 Elsevier Inc. All rights reserved.
Introduction

The present study was focused on understanding one of the initial
processes in language learning: speech segmentation. The difficulty of
the task lies in the lack of reliable acoustic cues that indicate where a
word begins and ends. Thus, unlike the blank spaces that appear
between printed words, the spoken acoustic signal could be
considered, in many respects, continuous. Listeners, therefore, must
parse the speech signal in order to start learning the new language.
Notice that this initial process of isolating words is mandatory for
subsequent language processes; for example, associating the possible
lexical trace with a specific meaning.

To segment the auditory stream into words, the learner could
exploit different acoustical cues such as allophonic variation, stress
patterns, prosody, or/and distributional cues such as phonotactic
regularities and transitional probabilities of syllable combinations
(see for a review Jusczyk et al. (1999)). In relation to the distributional
cues, several models have proposed the existence of a powerful
statistical learning mechanism in order to explain speech segmenta-
tion (Brent, 1999). Supporting this idea, several experiments have
shown that listeners are able to exploit the distributional properties of
the input, regardless of whether it consists of syllables, tones or visual
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information (Fiser and Aslin, 2001; Saffran et al., 1999), and it likely
proceeds in an incidental fashion (Saffran et al., 1997; Toro et al., 2005;
Turk-Browne et al., 2005). Thus, statistical learning is understood as a
domain-general mechanism that profits from the regularities of the
environment to drive learning.

The computational implementation of this hypothesis has been
successfully applied by connectionist models (Christiansen et al.,
1998; Elman, 1990; for a different account see Brent, 1997). The
underlying idea is that word boundaries are in locations where the
transitional probabilities between two sounds are low. In other words,
word boundaries can be inferred based on the fact that transitional
probabilities are higher for word-internal than for word-external pairs
of syllables. For instance, in the sentence “look, a balloon” the string
“ba/lloon” is more likely to occur together across other sentences than
the string “a/ba” as the latter string would not be heard in phrases
such as “the balloon”, “the red balloon”, etc. In fact, it has been
demonstrated in infants and adults that computing the transitional
probabilities between syllables is sufficient for isolating new words
that are embedded in an artificial continuous speech streamwhen no
acoustical cues are available (Saffran et al., 1996a,b). Remarkably, this
process is also accomplished by other animal species (Hauser et al.,
2001; Toro and Trobalon, 2005), highlighting its generality.

Interestingly, an alternative computational proposal suggests that
the formation of syllabic chunks might be the only process required to
isolate possiblewords (Perruchet and Vinter,1998). Accordingly to the
authors, a chunk can be considered that brings together the elements
that are at the attentional focus at a particular moment. In subsequent
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