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ABSTRACT

Normalization of brain images is a crucial step in MRI data analysis, especially when dealing with abnormal
brains. Although cost function masking (CFM) appears to successfully solve this problem and seems to be
necessary for patients with chronic stroke lesions, this procedure is very time consuming. The present
study sought to find viable, fully automated alternatives to cost function masking, such as Automatic Lesion
Identification (ALI) and Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL). It
also sought to quantitatively assess, for the first time, Symmetrical Normalization (SyN) with constrained
cost function masking. The second aim of this study was to investigate the normalization process in a
group of drug-resistant epileptic patients with large resected regions (temporal lobe and amygdala) and in
a group of stroke patients. A dataset of 500 artificially generated lesions was created using ten patients
with brain-resected regions (temporal lobectomy), ten stroke patients and twenty five-healthy subjects.
The results indicated that although a fully automated method such as DARTEL using New Segment with an
extra prior (the mean of the white matter and cerebro-spinal fluid) obtained the most accurate normalization
in both patient groups, it produced a shrinkage in lesion volume when compared to Unified Segmentation
with CFM. Taken together, these findings suggest that further research is needed in order to improve auto-
matic normalization processes in brains with large lesions and to completely abandon manual, time consum-
ing normalization methods.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Spatial normalization is one of the most important steps in second-
level group magnetic resonance imaging (MRI) analyses. Structural im-
ages of participants are normalized to a template (standard or group),
ensuring that a one-to-one correspondence among the brains of each
individual in the group is created. Normalization becomes more com-
plex when it has to deal with patients with brain lesions. These brains
have often greater differences than those individual variations charac-
terizing healthy brains due to important lesions or pathologies (Brett
et al., 2001). Correct normalization of individual brains is essential to
ensure that brain areas are properly aligned, maximizing sensitivity
and minimizing false-negative results. To this end, multiple normaliza-
tion algorithms have been implemented in fully automated software
programs.
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Two of the most used normalization algorithms are the Diffeo-
morphic Anatomical Registration using Lie Algebra (DARTEL)
(Ashburner, 2007) and its predecessor, Unified Segmentation
(Ashburner and Friston, 2005), implemented in the Statistical Para-
metric Mapping software (SPM, Wellcome Department of Imaging
Neuroscience, University College, London, UK, www.fil.ion.ucl.ac.uk/
spm/). Unified Segmentation combines segmentation, bias correction
and spatial normalization under the same iterative model using white
matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) tissue
maps as priors (TPMs). These TPMs are deformed by a linear combi-
nation of a thousand cosine transform bases, and several Gaussian
distributions are used to model the intensity of each tissue class. Un-
like Unified Segmentation, DARTEL utilizes a large deformation
framework to preserve topology, assuring that the deformations are
invertible, diffeomorphic and parameterised by a flow field. Rather
than using a thousand parameters for the registration process as Uni-
fied Segmentation, DARTEL uses about six million and the registration
itself involves alternating between computing an average template of
the GM and WM TPMs from all subjects and warping all subjects'
TPMs into a better alignment with the template created (Ashburner,
2009). Both of these algorithms are segmentation-dependant, as
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DARTEL needs the segmentations of all subjects in the group to create
the average template and Unified Segmentation combines segmenta-
tion with normalization. Besides Unified Segmentation, another way
to provide DARTEL with the GM and WM segmentations it needs is
the New Segment toolbox under the SPM8 distribution. This algo-
rithm is essentially the same as that described in the Unified Segmen-
tation model, except for a different treatment of the mixing
proportions, the use of an improved registration model, the ability
to use multi-spectral data and an extended set of tissue probability
maps (The FIL Methods Group, 2010). The default set includes TPMs
for gray matter, white matter, CSF, bone, soft tissue and air/back-
ground, but allows the user to define as many extra TPMs as desired
(The FIL Methods Group, 2010). New Segment can also provide defor-
mation fields which can be later used to spatially normalize images,
but in this manuscript it has been only used to provide DARTEL
with the segmentations it needs.

In addition, as part of the Advanced Normalization Tools (ANTS)
(Avants et al,, 2011a), the Symmetric normalization algorithm (SyN)
(Avants et al., 2008), also based on large deformations, has shown to
perform at least as good as DARTEL when dealing with healthy subjects
(Klein et al., 2009). SyN keeps symmetry when connecting two images
in a geodesic (shortest distance in space) link, meaning that the path
from A to B is the same than the one from B to A, irrespective of the op-
timisation or the similarity metric used (Avants et al., 2008). SyN has
about 28 million degrees of freedom (Klein et al., 2009) and uses a gra-
dient optimization scheme which is basically an iteration over time of
three steps: computing the similarity gradient, updating the deforma-
tion field and regularizing the deformation field. Within ANTS, SyN
can work with different similarity metrics as cross-correlation, mutual
information or mean square difference (Avants et al., 2011b) and can
use different types of regularization based on Gaussian or Bsplines.
ANTS also provides optimal template construction and image segmen-
tation, among other things.

In healthy subjects these normalization methods function optimally
but, in contrast, spatial normalization suffers from some limitations
when normalizing images of patients with large lesions, such as those
found in stroke patients (Andersen et al.,, 2010) or in patients with tu-
mors, cortical dysplasia or atrophy (Crinion et al., 2007). Different proce-
dures have been used when trying to normalize abnormal brains. Initially,
cost function masking (CFM) with standard SPM normalization was pro-
posed for routine use when normalizing brains with regions containing
abnormal signal intensities (Brett et al, 2001). Most normalization
methods calculate a cost function, a measure of the signal intensity differ-
ence between a source image and a template, which has to be minimized
(Brett et al., 2001). CFM is based on creating a binary mask of the lesioned
area and taking the signal under the masked area out of the calculation of
the transformations needed to normalize the image. Later, Crinion et al.
(2007) proposed that, although for low regularization the use of the Uni-
fied Segmentation model with CFM provided a better registration than
Unified Segmentation without CFM, when using medium regularization
the use of CFM did not improve normalization. These results were
assessed in a set of ten patients with different types of brain injuries (in-
cluding tumor, stroke, cortical atrophy and dysplasia) and the regulariza-
tion process was formulated as the precision of the bending energy priors
on the deformation relative to the squared difference between the ob-
served and normalized images under the Gaussian definition of noise.
Nevertheless, a very recent study by Andersen et al. (2010) using a data-
base of 49 chronic stroke patients showed that Unified Segmentation and
medium regularization with CFM yielded better normalization results
than those of Unified Segmentation with medium regularization alone,
demonstrating the need for CFM when dealing with large lesions.

Interestingly, a different approach was recently presented by Seghier
et al. (2008) in which adding an extra fourth tissue prior, which was de-
fined as the mean of the cerebrospinal fluid (CSF) and white matter
(WM) tissue probability maps (provided by SPM), improved the segmen-
tation using the unified model. Unified Segmentation is computed twice:

first, an iteration is computed with the predefined extra class, and then a
second iteration is calculated with an updated definition (subject-
specific) of the extra class (Seghier et al., 2008). Following this
work, the Automated Lesion Identification (ALI) toolbox was developed,
which allows the user to implement this type of normalization while also
being capable of automatically identifying and delineating lesions.

Although spatial normalization of abnormal brains has been
assessed with small-deformation methods such as Unified Segmentation,
it has not yet been studied with large deformation techniques such as
DARTEL, which have proven to achieve a better normalization in healthy
volunteers (Klein et al., 2009; Tahmasebi et al.,, 2009; Yassa and Stark,
2009). Alternatively, the SyN method allows the possibility to use a tech-
nique called constrained cost function masking (CCFM) in order to nor-
malize lesioned brains (Kim et al. 2007), which has been reported to
give optimal results when normalizing a group of stroke patients
(Schwartz et al., 2009). As in CFM, a lesion mask must be depicted and ap-
plied to the registration. In CCFM, the velocity field parameters calculated
by SyN under the mask are treated as unknown values and estimated
using the information given by the velocity fields of the healthy tissue
near the masked area.

In addition to the methodological issues previously discussed,
there is a limitation in the generalization of the results obtained by
previous studies to all brain lesions. It is important to note that
most of the previous analysis dealt with patients with a variety of
brain injuries, especially with lesions derived from vascular events,
but none of them directly investigated these issues with a set of pa-
tients with large brain resections. After surgery, CSF mostly invades
the empty space left by the resected tissue; however, the remaining
brain tissue also tries to occupy this new empty volume. These varia-
tions produce a great variety of morphological brain changes, which
might create serious difficulties when trying to normalize images of
these injured brains. Because many studies involve tumor-resected
patients or epileptic patients with removal of the epileptic focus,
these problems are not infrequent (Cheung et al., 2009; Immonen et
al., 2010; Yogarajah et al., 2010). Achieving an optimal normalization
for these patients is crucial, especially for studies aiming to compare
pre- and post-surgery brains.

The first aim of the present study was to evaluate which of the
previously described approaches is more effective for abnormal
brain normalization. We are particularly interested in automated
methods that could lead to the abandonment of manual lesion depict-
ing methods such as CFM or CCFM, which are extremely time con-
suming as the lesions must be defined manually by an expert
neurologist or neuroradiologist and might also be subject to expert
biases. We expected that the more sophisticated approach given by
DARTEL (Klein et al., 2009; Tahmasebi et al., 2009; Yassa and Stark,
2009) and SyN (Klein et al., 2009), which has proven to provide a bet-
ter normalization than other traditional SPM based methods in
healthy subjects, would achieve a more accurate normalization. We
also expected that using an extra class as a prior would cause the
ALI toolbox to improve normalization results compared to regular
Unified Segmentation. The second aim of this study was to determine
the impact of the type of lesion in the performance of the normaliza-
tion methods, especially when dealing with brain-resected patients.
With this purpose in mind, normalization methods were tested on
three different groups of participants (healthy patients, stroke pa-
tients and epileptic patients with brain-resected regions) to study
whether there are differences in normalization performance of the
different methods when dealing with different types of lesions.

Materials and methods
Subjects

Three different sets of patients participated in this study: (1) ten
stroke patients (8 chronic, 2 acute) who suffered focal damage due
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to a single vascular event (2 women; mean age 66.3; age range
46-75; mean time since ictus 45.3 months, see Table 1); (2) ten mesial
temporal lobe epileptic patients who were therapeutic drug resistant
and had undergone surgery (temporal lobectomy or amygdalectomy)
to have the epileptic focus regions resected (6 women; mean age
44.7; age range 29-66, see Table 1); (3) twenty-five healthy partici-
pants (17 women, mean age 34.9, age range 21-71).

MRI data acquisition

Structural MRI data were obtained using a 3.0 Tesla Siemens
Trio MRI system. A whole brain 3D magnetisation-prepared rapid
gradient echo (MPRAGE) scan was acquired for each individual
of each group (flip angle=9°, TR=2300 ms, TE=3 ms, voxel
resolution =1.00x 1.00 x 1.00 mm, field of view =244 mm).

Dataset creation and patient normalization

One way to assess the goodness of normalization when dealing with
lesioned brains is to apply a lesion to a healthy brain and then compare
the normalization parameters obtained for the healthy and lesioned
versions of the image (Andersen et al., 2010; Brett et al., 2001; Crinion
etal,, 2007; Nachev et al. 2008). With this aim, a dataset of 500 artificially
lesioned images was created using the ten stroke lesions, the ten
resections and the twenty-five brain images from the healthy subjects.

As in Nachev et al. (2008) we inserted, in each healthy brain image,
20 different lesions (10 from the stroke patients and 10 from the resec-
tions), thus yielding 500 images. We first normalized the twenty images
from both the resected and stroke groups using Unified Segmentation
with CFM. Because the use of cost function masking has proven to be ef-
fective in the normalization of abnormal brains, a trained neurologist
created binary masks of the lesioned areas by manually depicting the
precise boundaries of the lesion directly into the T1 image using the
MRIcron software (Rorden and Brett, 2000; http://www.cabiatl.com/
mricro/mricron/index.html). It has been shown that using CFM with
roughly or precisely defined masks as well as smoothed or unsmoothed
masks has no effects on normalization (Andersen et al., 2010). In the

Table 1
Demographic information and lesion description for the patient dataset.
Group Patient Sex Age Lesion location Time since
ictus (months)

Stroke S1 Male Left middle cerebral artery 2
Stroke S2 Female 68 Right middle cerebral 10

artery
Stroke S3 Male 75  Right middle cerebral 92

artery
Stroke S4 Male Left Frontal Haematoma 4
Stroke S5 Male 61 Right middle cerebral 87

artery
Stroke S6 Male 68  Left thalamus 12
Stroke S7 Male 69 Left capsule 172
Stroke S8 Male 58 Left middle cerebral artery 60
Stroke S9 Male 70  Right thalamus 6
Stroke S10 Female 51 Left basal ganglia 8
Group Patient Sex Age Lesion location Time since

surgery (months)

Epileptic R1 Male 45 Right temporal lobectomy 35
Epileptic R2 Female 37 Left temporal lobectomy 4
Epileptic R3 Male 52 Right temporal lobectomy 35
Epileptic R4 Male 37 Right temporal lobectomy 3
Epileptic R5 Female 29 Left amygdalectomy 3.5
Epileptic R6 Female 35 Left amygdalectomy 4
Epileptic R7 Female 51 Right temporal lobectomy 35
Epileptic R8 Female 62 Left temporal lobectomy 4
Epileptic R9 Female 33 Left temporal lobectomy 3

Epileptic R10 Male 66  Right temporal lobectomy 3

present study, smoothing was not applied to the masks, and they
were drawn as accurately as possible. All structural images of both
stroke and resected epileptic patients groups, with their respective
masks, are displayed in Figs. 1a and b, respectively.

All the twenty-five images from the healthy group were also
brought to MNI space using Unified Segmentation. Once in the same
space, lesions were inserted into healthy brains and, using the inverse
transformation obtained for the healthy brain images in the previous
step, they were brought back to native space. To take into account the
difference in intensities between lesioned and healthy brain images,
we applied a correction factor to the lesion to be inserted prior to
reslicing the artificially simulated image to native space. This factor
was calculated, as in Brett et al. (2001), as the division of the mean
of all brain tissue voxels outside the place where the lesioned area
should be inserted in the healthy brain divided by the mean of all
brain tissue voxels outside the lesioned area in the lesioned brain.
After repeating this process for all healthy brain images we obtained
two large datasets of artificially generated brain images: 250 images
from stroke lesions and 250 images from resected lesions.

SPMS8 was used to implement all procedures except for SyN which
works under ANTS. In every case, each structural image was normal-
ized to the MNI stereotaxic space using the ICBM452 template, except
for the registrations carried out by SyN which were normalized to a
subject-specific template (see below). All the parameters in the algo-
rithms described in this section were used when normalizing both
the resected and stroke groups, as well as the healthy dataset. For
more details on the code used to implement the algorithms please
see Supplementary Material Section 3.

Ten different types of segmentation-normalization combinations
were then applied to the resected and stroke groups of artificially
generated lesions (see Table 2). In total, almost 5000 registrations
were computed. First, combinations involving Unified Segmentation
were used. The first approach implemented was Unified Segmenta-
tion, as it has been proven to be a good option when normalizing ab-
normal brains (Crinion et al., 2007). Using the lesion masks, Unified
Segmentation with CFM was performed (Crinion et al., 2007). Default
parameters were used for segmentation (number of Gaussians per
class, Bias FWHM or warp frequency cut-off), except for regulariza-
tion which was set to medium for both normal and CFM approaches.

An extra class, the result of the mean of the WM and CSF tissue
probability maps provided by SPM, has been demonstrated to give
the segmentation procedure more flexibility when dealing with dam-
aged tissue (Seghier et al., 2008). However, this extra class was an
empirical definition that worked well for a specific dataset. Different
datasets with different contrasts and different types of lesions or loca-
tions can respond better to a different extra class, and priors can be
adapted to increase accuracy of the normalization (Mohamed Segh-
ier, personal communication, October 13 2010). To see the effect of
using different extra classes as priors, the ALI toolbox was used with
two different extra classes, one of which was the mean of the WM
and CSF TPMs and the other was the mean of the GM and CSF TPMs
provided by SPM8. Adding the GM based extra prior did not improve
ALI toolbox performance (see Supplementary Tables 1-3). Normaliza-
tion within the unified model was performed, as ALI normalization is
basically a Unified Segmentation run twice with an extra prior.
Threshold probability and threshold size were kept to default values
and as a small number of iterations seems to be a reasonable trade-
off between definition of the extra class and proper classification of
normal tissue (Seghier et al.,, 2008) it was also set to the default
which is 2 iterations.

The GM and WM tissue maps provided by these three previous
combinations under the Unified Segmentation model (medium regu-
larization with and without cost function masking and ALI toolbox)
were used to provide DARTEL with the needed initial segmentations.
In addition, New Segment, was also used to provide for GM and WM
images. All the segmentation parameters used in New Segment were
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Fig. 1. A. T1 axial and coronal slices of the group of drug-resistant epileptic patients illustrating the temporal lobe and amygdala regions resected (red masks). B.T1 axial and coronal
slices of the group of chronic stroke patients with their respective lesion masks covering all of the injured areas (blue masks). Neurological convention is used in both datasets.

the default except again for regularization which was set to medium
as in Unified Segmentation (Crinion et al., 2007).

An extra segmentation was performed under New Segment, follow-
ing the rationale of the ALI toolbox (Seghier et al., 2008). An extra tissue
class defined as the mean of the WM and CSF TPMs was added to the six
default TPMs (results of New Segment with an extra prior defined as the
mean of the GM and CSF TPMs are provided in the supplementary ma-
terial). These two sets of GM and WM tissue maps provided by New
Segment were also used as an input to implement DARTEL normaliza-
tion. All parameters were kept to default except for the regularization
term. DARTEL penalizes the registration with an energy form which
can be linear elastic, membrane or bending. The default option, linear
elastic, was chosen as it was also the one used by Klein et al. (2009) in
their evaluation of the performance of DARTEL when dealing with
healthy subjects. DARTEL linear elastic regularization allows the user
to increase a parameter p which will penalize shearing and scaling
(Ashburner, 2007). Four times the default | value was used after carry-
ing out a small parameter search, as increasing regularization has im-
proved other algorithms performance in past studies (Crinion et al.,
2007). For this parameter search, ten different stroke artificially gener-
ated images were first normalized using Unified Segmentation with
CFM. The gray and white matter images generated were provided to
DARTEL and the artificially generated lesioned images and their healthy
counterparts were normalized. Three different regularizations were ap-
plied using twice, four times and default DARTEL regularization.

Table 2

Segmentation-normalization procedures used in the study. With DARTEL, the GM and
WM images generated by the different methods in the table are entered as input.
Methods marked with an asterisk are also used to normalize the healthy group.

Unified segmentation Medium regularization*
Medium regularization CFM
ALI toolbox + (WM + CSF) /2*
Medium regularization*
Medium regularization CFM
ALI toolbox + (WM + CSF) /2*
New Segment*
New Segment + (WM + CSF) /2*
ANTS SyN*

SyN CCFM

DARTEL

Normalizations parameters between healthy and lesioned images
were compared in order to assess the effect of augmenting the regular-
ization and four times default was chosen (see Results section).

SyN with and without CCFM was also used to normalize both le-
sioned groups. Cross-correlation as a similarity metric, Gaussian regu-
larization and 30 iterations for the first coarsest, 99 for the next and
11 at full resolution were chosen, as these were the ones used by
Klein et al. (2009) in their normalization study. Gradient-descent step
was kept to default value 0.25 and, as recommended in ANTS manual
(Avants et al.,, 2011b), the radius of the correlation window in the
similarity metric was increased to eight which has been shown to
improve registration performance when dealing with brains with
severe damage.

As in all Unified Segmentation and DARTEL based normalizations, all
500 simulated lesions using SyN CCFM were initially registered to the
ICBM452 template, but more than a hundred normalizations ended
with awkward distortions. This result was probably obtained because
the ICBM452 template is too smooth and lacks the anatomical detail
needed to be used as target template for SyN. Then, ANTS utility for tem-
plate creation (Avants et al., 2009) was used to create a template with
the 25 healthy subjects' images, which was later used as the target tem-
plate for SyN with and without CCFM.

Healthy participants' normalization

For the set of 25 healthy volunteers, only seven different types of
segmentation-normalization combinations were applied, as the
methods involving CFM or CCFM were not performed. In Table 2
methods marked with an asterisk are the ones also assessed for
healthy participants.

Performance evaluation

Visual inspection of the normalized images was performed on
every single image to identify poor normalization and segmentation.
In addition, root mean square displacement (RMSD) was used to
quantify the performance of the different normalization methods in
the 250 artificially generated images of the resected and stroke
groups. To compute it, a deformation field, which is an image with a
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mapping from a template to a source, was generated from the nor-
malization parameters for every single registration calculated. Then,
the deformation field for healthy subject H normalized with algorithm
A and the deformation field of image L, artificially generated from
image H, and also normalized with algorithm A, were compared. This
was done by calculating the summed squared differences (distance)
in each direction x, y and z between voxel n of image H and its counter-
part on image L. Finally the RMSD (Egs. 1 and 2) of all the differences in
the voxels was taken (Brett et al,, 2001):

D, = \/ (XA—xi#A)? 4. (yHA— )2 | (g4 _gHA)2 (1)

T
RMSD = | ;Wn) /T ()

where D,, is the distance and T is the total number of voxels in the
image. This measure was obtained for each of the 500 artificially gener-
ated images and each of the 10 segmentation-normalization algorithms
(see Table 2).In some cases, normalization of lesion volume is especially
important, as for example, when trying to make inferences about the
behavioral effect of a lesion. For example, lesion behavioral mapping
(Bates et al., 2003; Rorden et al., 2007), has been widely used to report
relationships between brain injury location and behavioral measures.
Usually, in this type of analysis, all patients' lesion definitions (LD)
must necessarily be in the same normalized space. Thus, normalization
of lesion volume becomes critical. Therefore, RMS displacement
measure was calculated inside and outside the lesion as well as for the
whole brain tissue. To this purpose, each of the LDs, which was
manually depicted in native space, was resliced into normalized space
obtaining a normalized lesion definition (NLD). To perform these trans-
formations, the normalization parameters calculated previously for the
ten normalization combinations analyzed (see Table 2) for every simu-
lated lesion in both patient datasets were used, and one NLD per simu-
lated lesion and normalization algorithm was obtained. RMSD between
healthy and lesioned brains was calculated inside and outside these
NLDs for all subjects in both stroke and resected groups. Repeated mea-
sures ANOVA was performed to check for a significant effect of the
method used and Greenhouse-Geisser correction was applied.
Paired t-tests were subsequently calculated between pairs of
methods to evaluate significant differences between them.

RMSD was also calculated for the transformations done within the
regularization parameter search for DARTEL and repeated measures
ANOVA with Greenhouse-Geisser correction was performed for
DARTEL with default, double and four times regularization. After
this, paired t-tests were also calculated between the different regular-
ized DARTEL data.

Post-normalized lesion volume has also proven to be a good way to
quantitatively assess the goodness of normalization (Andersen et al.,
2010). Thus, for each of the ten algorithms, to account for differences
in lesion size post-normalization, the volume of 200 lesions after nor-
malization (10 strokes and 10 resections per 10 algorithms) were man-
ually delineated. While a direct comparison can be done for all SPM
based methods because they are normalized to the same MNI template,
a correction factor must be applied to the lesion volumes calculated on
images using ANTS based methods, as they are normalized to a subject-
specific template. This factor was calculated as the division of the num-
ber of brain tissue voxels in each healthy subject image normalized with
an SPM based method and the same parameter for ANTS based normal-
ized images. Percent of change of each volume respect to the volume of
Unified Segmentation CFM was computed, as it is considered the gold-
standard (Andersen et al., 2010). Repeated measures ANOVA with
Greenhouse-Geisser correction was performed to check for a significant
effect of the nine remaining methods. Paired t-tests were also calculated
between pairs of methods to evaluate significant differences. As manual

definition of lesioned areas can introduce a bias, lesion volume was also
calculated using the previously defined NLDs, only for the same lesions
that were manually depicted in normalized space. Paired t-tests were
performed, for each algorithm, between manually defined lesions in
normalized space and NLDs.

The non-use of a lesion mask has proven to distort the area around
the lesion (Brett et al., 2001; Kim et al., 2007). To control for this effect,
Dice similarity index (DSI; Dice, 1945) was used to calculate the area of
overlap among the normalized lesion definitions for methods using and
not using a lesion mask. DSI ranges between 0 and 1 (being 0 no overlap
and 1 a perfect similarity) and takes into account both false negatives
and false positives. DSI between masked (M) and non-masked (NM) al-
gorithms was calculated as twice the overlap between both NLDs divid-
ed by their sum (Eq. 3):

2(MNNM)

DICE = e 3)

To calculate this metric, all NLDs were used. For the SPM based algo-
rithms DSI was computed taking Unified Segmentation with CFM as the
ground truth as it is the only algorithm using a lesion mask. For the
same reason, for ANTS based algorithms, SyN with CCFM was taken as
the reference. Results were compared using the non-parametrical
Mann-Whitney U test (Wilke et al,, 2011).

For the healthy subjects group, normalized cross-correlation
(NCC) was used, as it has proven to be a good measure of similarity
between warped and template images (Tahmasebi et al., 2009). In
this case, it was used to assess the similarity and thus the accuracy
of the normalization process among all warped images within the
healthy group. First of all, a pair of images was normalized to have a
mean of zero and unit variance, and then a cross correlation was com-
puted following (Eq. 4):

N
2 06—t (V- bty

NCC(X,Y) =" (4)

0,0,

where N is the number of voxels, x,, and y, are the values of voxel n in
the images X and Y, 1, and p are their respective means and oy and o,
are their respective standard deviations. For each computation be-
tween two different warped images, a whole brain NCC score was
obtained. Within the healthy group, NCC scores were computed by
comparing each warped image against every single other image in
the group, therefore obtaining n!/2(n-2)! NCC scores, where n stands
for the number of subjects in the dataset (i.e. 25). Because each seg-
mentation-normalization combination uses the same pairs of images
to compute each NCC score, once again repeated measures ANOVA
with Greenhouse-Geisser correction was performed before paired
t-tests were calculated.

Results
Visual inspection

Visual inspection of the GM and WM images showed poor seg-
mentation and normalization for very few images in three different
algorithms: Unified Segmentation without CFM (five resections and
four strokes), Unified Segmentation with CFM (five resections and
four strokes) and ALI toolbox with (WM + CSF)/2 (five resections
and four strokes). All these images were artificially generated from
the same healthy subject. The transformations calculated for these
images were not included in the analysis and their respective GM
and WM segmentations were not provided to DARTEL as inputs ei-
ther. A visual example of the ten normalization methods on a resec-
tion can be seen in Fig. 2.
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From visual assessment it is hard to evaluate which normalization
procedure performed better as they all seem to do a proper registra-
tion. Nonetheless, a closer look shows that some of the algorithms
warp some lesioned areas out of what brain tissue should be. This
specially happens when the lesion is near the skull, as in the resected
dataset. To get a better view on this effect, brain tissue masks were
created from the ICBM452 template used for SPM based methods
and from the subject-specific template used for ANTS based methods
(see below). In Fig. 3, the lesion volume depictions of the same
resected image from Fig. 2 are shown over their respective brain tis-
sue maps. It can be seen that Unified Segmentation without CFM,
ALl 4+ (WM + CSF) /2, DARTEL with Unified Segmentation with and
without CFM and DARTEL with ALI+ (WM + CSF)/2 all warp the le-
sioned area away from what the normalized brain tissue should be
causing an out-of-brain distortion (OoBD) effect. Because of this
OoBD effect, only voxels within a defined brain tissue mask (BTM)
were later computed when calculating the lesion volumes post-
normalization. For SPM based methods a resliced version, to match
voxel size of normalized T1s, of the standard SPM8 brain tissue mask
was used as TBM. On the other hand, for SyN based methods, a specific
TBM was created after segmenting, binarizing and smoothing the subject
specific template created using ANTS. Importantly, the volumes reported
here are the volumes of the lesion, masked to include only voxels inside
the brain. If an algorithm has a tendency to create an OoBD effect, the vol-
ume measure presented here will not penalize this algorithm as long as
the remaining volume inside the brain is similar to the standard.

DARTEL regularization parameter search

Repeated measures ANOVA analysis with Greenhouse-Geisser
correction on the RMSD measures for the ten stroke images used in
the parameter search normalized with DARTEL with default, double
and four times regularization showed a significant effect of the

[

Fig. 2. Ten different normalizations applied to the same artificially generated image from the resected dataset. US: Unified Segmentation. CFM: Cost Function Masking. ALI: Auto-
matic Lesion Identification. WM: White matter. CSF: Cerebrospinal fluid. DARTEL: Diffeomorphic Anatomical Registration using Exponentiated Lie algebra. SyN: Symmetrical
Normalization. CCFM: Constrained Cost Function Masking. NS: New Segment.

regularization (F(2,18) =11.284, p<0.01, see Table 3). DARTEL with
4 times regularization had the lowest RMSD score, which was lower
than DARTEL with default and double regularization (t(9)=—3.6,
p<0.01 and t(9) = —3.2, p<0.05, respectively). When DARTEL with
segmentations provided by Unified Segmentation with CFM and
four times regularization is compared to the RMSD scores for Unified
Segmentation with CFM, which is supposed to be the gold standard, a
paired t-test failed to find significant differences between them.

Epilepsy group

Repeated measures ANOVA analysis with Greenhouse-Geisser
correction on root mean squared displacement scores for the
resected epileptic group showed a significant effect of the nor-
malization method (F(9,2196)=58.322 p<0.001, see Fig. 4).
DARTEL with New Segment + (WM + CSF)/2 as input was found
to have the lowest RMSD score, which was lower than Unified
Segmentation with CFM and SyN with CCFM (t(244)= —6.99,
p<0.001 and t(249) = —7.69, p<0.001, respectively). Unified Seg-
mentation with CFM obtained a lower RMSD score than SyN with
CCFM (t(244)= —2.29, p<0.03). RMSD scores outside the lesion
were in agreement with whole brain scores, being DARTEL with
New Segment+ (WM + CSF)/2 the normalization method that
achieved the smallest RMSD. However, inside the NLDs, Unified
Segmentation with CFM was found to achieve the lowest RMSD
score (1.35 mm error), compared to SyN with CCFM and DARTEL
with New Segment+ (WM+ CSF)/2 as input (t(244)= —5.24,
p<0.001 and t(244)=—4.45 p<0.001, respectively), which
achieved the second lowest errors. There were not significant dif-
ferences between DARTEL with New Segment+ (WM + CSF)/2
(1.63 mm error) and SyN with CCFM (1.57 mm error) scores (t
(249) =0.60, p<0.54). A detailed report on this analysis can be
found in Section 1 and Table S4 of the Supplementary Material.



1302 P. Ripollés et al. / Neurolmage 60 (2012) 1296-1306

US CFM ALI (WM+CSF)/2
DARTEL US DARTEL CFM DARTEL ALI (WM+CSF)/2

SyN CCFM

el

DARTEL NS DARTEL NS (WM+CSF)/2

Fig. 3. Lesion volumes over brain tissue maps for the different normalizations of the same artificially generated image shown in Fig. 2 from the resected dataset.

All t-test comparisons failed to show differences in volume
between the manual depicted lesions in normalized space and
their respective NLDs. Mean volume for the NLD analysis are in-
cluded in Table S6 of the Supplementary Material. The analysis of
the volume of the lesions manually depicted in normalized space
revealed that there were significant differences between normal-
ization methods (see Fig. 7A). Repeated measures ANOVA
showed a significant effect of method (F(8,72)=96.6, p<0.001).
Fig. 7A revealed that clearly, SyN presented smaller volume dif-
ferences compared to the other methods (t(9)>12, p<0.001). If
this method was removed from the comparison, differences in
volume change among methods still remained significant (F
(7,63)=6.6, p<0.01). The method that presented the smallest
change in volume was Unified Segmentation with medium regu-
larization compared to the other methods (t(9)>2.3, p<0.05)
except to ALI toolbox (t(9)=0.96, n.s.) which the differences
were not significant.

All algorithms achieved high DSI values (see Table 4) with
Unified Segmentation without CFM and ALI + (WM + CSF) /2 achieving
the highest scores. No significant DSI differences (p<0.7) were found
between them, but their respective DSIs were significantly higher
than the ones obtained by the other algorithms (all p<0.001). SyN
without CCFM obtained the lowest (all p<0.001) DSL

Table 3
Root mean square displacement (RMSD) for the ten stroke artificially generated images
within the parameter search data.

Method Regularization Mean

Unified Segmentation with CFM Medium 0.56

DARTEL CFM Default 0.89
Double default 0.79
Four times default 0.52

Stroke patients

Repeated measures ANOVA analysis with Greenhouse-Geisser
correction on root mean squared displacement scores for the stroke
group showed a significant effect of the normalization method (F
(9,2205) =259.963, p<0.001, see Fig. 5). DARTEL with New Seg-
ment + (WM + CSF)/2 as input was again the method with the
lowest RMSD score, which was lower than Unified Segmentation
with CFM and SyN with CCFM (t(245)= —15.84, p<0.001 and t
(249) = —14.69, p<0.001, respectively). No differences were
found between the RMSD scores of Unified Segmentation with
CFM and SyN with CCFM. In this case, the pattern of results inside
and outside NLDs was exact to the one obtained from the whole
brain analysis, being DARTEL with New Segment + (WM + CSF) /2
the normalization algorithm which achieved the lowest RMSD
score. However, inside NLDs, no differences were found between
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Fig. 4. Mean (and standard error of the mean, SEM) for RMSD scores for all algorithms
and the epileptic resected dataset. Lower values indicate better performance of the

normalization procedure.
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Table 4

DSI mean and SD for epileptic and stroke datasets. SPM based methods are compared
against Unified Segmentation with CFM, while ANTS based results are compared
against SyN with CCFM.

Method Resected epileptic Stroke

Unified Segmentation Med. regularization 0.90+0.03 0.97 £0.03
ALl + (WM +CSF) /2 0.89+0.03 0.93+0.03

DARTEL Med. regularization 0.88 +0.04 0.87+0.03
Med. regularization CFM 0.90 + 0.02 0.88 +0.03
ALl + (WM +CSF) /2 0.87 £0.02 0.86 +0.06
New Segment 0.88 +0.02 0.86 4 0.06
New Segment + 0.85+0.02 0.84+0.07
(WM +CSF) /2

ANTS SyN 0.80+0.05 0.81+0.07

the RMSD scores (p<0.5) achieved by Unified Segmentation with
CFM (1.07 mm error) and the ones obtained by DARTEL with
New Segment+ (WM + CSF)/2 (1.03 mm error). A complete re-
port on this analysis can be encountered in Section 1 and Table
S5 of the Supplementary Material.

Once again, t-test comparisons failed to find differences in lesion
volume between NLDs and manually depicted lesions in normalized
space in the stroke group. Mean volume for the NLDs can be found
in Table S6 of the Supplementary Material. Repeated measures
ANOVA on the lesion volume change for manually depicted lesions
in normalized space revealed that there were significant differences
between normalization methods (F(8,72)=31.1, p<0.001; see
Fig. 7B). Fig. 7B shows that again, SyN presented greater decrease of
volume compared to all the other methods (t(9)>10, p<0.001).
The repeated measures ANOVA without the SyN method also
showed significant differences between methods (F(7,63)=5.5,
p<0.01). In the stroke group, the method that presented smaller
change in volume was the ALI toolbox. It showed smaller
changes than New Segment (t{(9)=5.6, p<0.001) and DARTEL
Medium Regularization (£(9)>5.0, p<0.001), and marginal signif-
icant differences compared to New Segment WM (t(9)=1.96,
p<0.1) and SyN CCFM (t(9)=1.90, p<0.1).

Once again, all algorithms obtained high DSI scores and Unified
Segmentation without CFM showed the highest one. This score was
significantly higher than the ones obtained by the rest of the other
normalization algorithms (all p<0.001). As in the resected dataset,
SyN without CCFM obtained the lowest (all p<0.001) DSI.

Healthy participants

Repeated measures ANOVA analysis on NCC scores for the
healthy group showed a significant effect of the normalization
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Fig. 5. Mean (and SEM values) RMSD scores for all algorithms and the stroke dataset.

Lower values indicate better performance of the normalization procedure.
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Fig. 6. Mean (and SEM values) NCC scores for all algorithms, except for those using
CFM or CCFM, for the healthy group dataset. Higher values indicate better performance
of the normalization procedure.

method (F(6,1794) =220.760, p<0.001, see Fig. 6). SyN was the
method with the highest NCC score, which was higher than DAR-
TEL with New Segment and Unified Segmentation (t(299) = 3.48,
p<0.001 and t(299)=14.69, p<0.001, respectively).

Discussion

In the present study, ten different methods for normalizing brains
with lesions were compared in three different sets of participants, in-
cluding brain-resected drug-resistant epileptic patients, stroke pa-
tients and healthy individuals. With this aim, two datasets of 250
artificially generated lesioned brains were created from the lesions
of the two groups of patients (ten stroke subjects and ten brain resec-
tions) and the twenty-five brains of the healthy subjects, yielding a
total amount of 5000 normalized brains. When assessing normaliza-
tion performance in lesioned brains, it is not possible to know
which algorithm has the lowest error compared to some unknown
gold standard. Nevertheless, one can compare variability of the algo-
rithms across brains and between lesioned-normal images. For this
purpose, root mean square displacement and post normalization le-
sion volume changes have been widely used (Andersen et al., 2010;
Brett et al., 2001; Crinion et al., 2007; Nachev et al. 2008). Using
these measures of displacement and volume changes after normaliza-
tion, the overall results indicated that there is not a single algorithm
which outperforms the others across healthy and patient groups,
and across measures.

When dealing with healthy subjects, SyN obtained the highest
NCC mean score, followed by DARTEL with New Segment. For
both resected and stroke datasets, the lowest RMSD value (whole
brain, inside and outside lesion) was obtained by DARTEL using
New Segment with (WM + CSF)/2 as a prior followed by Unified
Segmentation with CFM and SyN with CCFM, except for the
RMSD scores inside lesion volume for the resected dataset, in
which Unified Segmentation with CFM achieved the lowest
error. However, for the post-normalization lesion volume mea-
sure, Unified Segmentation with CFM showed the highest mean
in both patient groups. In addition, only DARTEL with its two
New Segment-based implementations, SyN with and without
CCFM and Unified Segmentation with CFM do not suffer from
an out-of-brain distortion effect which displaces lesioned voxels
out of the brain tissue normalized area (see Fig. 3). All SPM
non-masked algorithms obtained high DSI values for both
resected and stroke datasets, with respect to Unified Segmentation
with CFM (see Table 4). SyN without CCFM obtained the lowest DSI
score, which is in agreement with previous results that showed that
SyN without CCFM produced distortions around lesioned areas (Kim
et al., 2007).
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Recent studies have demonstrated that DARTEL (Klein et al., 2009;
Tahmasebi et al., 2009; Yassa and Stark, 2009) and SyN (Klein et al.,
2009) perform better than Unified Segmentation when dealing with
healthy subjects. More precisely, Tahmasebi et al. (2009) showed that
the NCC score of DARTEL was significantly increased by 3% over the
NCC score of Unified Segmentation in the registration of 17 subject im-
ages against a given template. Our NCC scores for the healthy dataset
are consistent with these findings, as DARTEL! with New Segment and
SyN had a 6% and a 8% greater NCC score than Unified Segmentation, re-
spectively (see Fig. 6). Klein et al. (2009) showed how SyN was as good as
DARTEL or even better when dealing with healthy subjects. This is also
consistent with our results as SyN yields the highest NCC mean score, al-
most a 2% better than DARTEL with New Segment.

Although there are studies of normalization dealing with chronic
stroke patients (Andersen et al., 2010) or with patients with a wide
range of lesions types (Brett et al., 2001; Crinion et al.,, 2007), to our
knowledge, this is the first time normalization methods have been tested
in a group of individuals with brain-resected regions (a group of thera-
peutic drug resistant mesial temporal lobe epileptic patients). Different
results have been obtained using Unified Segmentation with CFM on dif-
ferent groups of patients with different types of lesions. Although Crinion
et al. (2007) showed that there was not an improvement in registration
between Unified Segmentation with medium regularization with and
without CFM for patients with a range of lesions types, Andersen et al.
(2010) showed that CFM obtained better results over medium regulari-
zation when normalizing a large group of chronic stroke patients. These
results seem to show that when using Unified Segmentation, CFM be-
comes the gold standard when treating with patients that have large le-
sions and significant enlargement of CSF filled spaces, such as those
found in individuals suffering from chronic stroke (Andersen et al.,
2010). The results of the present study are consistent with the findings
reported in Andersen et al. (2010) as Unified Segmentation with CFM
showed a RSMD mean score almost 0.29 mm lower than Unified Seg-
mentation without CFM for the post-surgery epileptic group (see
Fig. 4) and 0.24 mm lower for the stroke dataset (see Fig. 5). However,
none of these Unified Segmentation-based methods improved the per-
formance of DARTEL with New Segment with (WM + CSF)/2 as a prior
which yielded the lowest RMSD scores, being 0.07 mm and 0.16 mm
lower than Unified Segmentation with CFM for resected and stroke
datasets, respectively. Using the ALI toolbox did not differ from using
Unified Segmentation alone, although for the stroke dataset it was the
algorithm obtaining the smallest mean volume reduction post-
normalization.

One might think, looking as the RMSD results (see Figs. 4 and 5), that
DARTEL with New Segment using (WM +- CSF) /2 as a prior, which is fully
automated, is the best choice to normalization of lesioned brain images,
followed by two non-automatic methods as Unified Segmentation with
CFM and SyN with CCFM which need lesion mask depiction. However,
the post-normalization lesion volume measure (Fig. 7) casts doubt on
the former statement as Unified segmentation with CFM gets the highest
mean volume for both resection and stroke groups. In fact, when com-
pared with Unified Segmentation with CFM, DARTEL with New Segment
using (WM + CSF) /2 as a prior produces a shrinkage in lesion volume of
about a 10% and a 14% for resected and stroke datasets respectively (see
Fig. 7). Therefore the present results seem to suggest that there is a com-
plex trade-off among methods: an automatic method such as DARTEL,
provides lower RMSD values but higher reduction of lesions, while
those methods providing better conservation of lesion volumes (such as

! It is important to remember that DARTEL was always used with four times the de-
fault regularization. This was done as the results of the small parameter search (see
Table 3) showed that there were not statistical differences in the RMSD score for DAR-
TEL with Unified Segmentation plus CFM used to provide for the GM and WM segmen-
tations needed, and that of Unified Segmentation with CFM which has proven to be the
gold-standard within SPM lesioned brain normalization (Andersen et al., 2010).
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Fig. 7. Mean (and SEM) percentage of reduction in lesion volume compared to Unified
Segmentation with CFM for resected (A) and stroke datasets (B).

those computed with cost function masking) do not provide such good
RMSD.

It is important to comment that the volume measure reported in this
manuscript (which is extracted from manual depiction of normalized le-
sions) can convey two possible mixture effects: the effect of the normal-
ization to the lesion definition itself and the effect that the normalization
could have on the ability of an expert to delineate the lesion. Following
this logic, the automatic lesion specification, extracted from the NLDs
and reported on Table S6 of the supplementary material, could only de-
scribe the effect of normalization on the lesion definition. However,
given that there were no significant differences between the volumes of
manually depicted lesions and automatic obtained NLDs, the effect of
the normalization in the ability of an expert to delineate a lesion is mini-
mal for all the algorithms analyzed.

Another important issue in the evaluation of the different automatic
methods is to what extent lesioned brains might yield to inconsistencies
in the normalizations. Visual inspection of segmented GM and WM im-
ages demonstrated how large sections of non-brain tissue were included
in the GM segmentation in both resections and strokes for Unified Seg-
mentation without CFM, Unified Segmentation with CFM and ALI toolbox
with (WM +- CSF) /2. Poor segmentation resulting in the inclusion of non-
brain tissue has been previously reported (Fein et al., 2006); however,
that study used an SPM2 normalization process (Ashburner and Friston,
1999). These segmentation errors have been associated with the misre-
gistration of individual brain images with the reference template. To
check this assumption, manual correction to the anterior commissure
for the images which were erroneously segmented was performed. All
the algorithms which failed to provide good segmentations for these im-
ages yielded optimum results once the lesioned images were corrected. It
is important to notice that all the New Segment-based approaches always
provided good segmentations for all the 500 artificially generated le-
sioned images without any type of manual correction.
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When looking at the normalized patient images, an out-of-brain
distortion (OoBD) effect was discovered (Fig. 3) which consists in a
displacement of the lesioned zone out of the borders of where nor-
malized brain tissue should be. This effect is most notorious in lesions
close to the skull such as those in the epileptic resected group
(Fig. 1A). Only Unified Segmentation with CFM, SyN based methods
and both DARTEL with New Segment based approaches were free
from this OoBD (see Fig. 3). Although it is quite clear that CFM and
CCFM are the reason why this effect does not appear when using
them with Unified Segmentation and SyN respectively, it is difficult
to know why New Segment based algorithms do not suffer from
this OoBD. The more accurate way of segmenting into GM and WM
provided by New Segment might account for the absence of OoBD ef-
fect, as better normalization is expected if images are better segmented.
Also the amount of regularization used by DARTEL might also help in
avoiding OoBD.

All these results seem to suggest that that the three best normaliza-
tion algorithms are Unified Segmentation with CFM, DARTEL with New
Segment using (WM =+ CSF)/2 as a prior and SyN with CCFM. All of them
have some advantages and drawbacks. A general advantage is that none
of them suffers from the OoBD described above and, although Unified
Segmentation failed to provide good segmentations for 9 out of the
500 artificially generated lesioned images, the problem was solved
when the images were manually corrected to the anterior commissure.
First of all, it is clear than SyN was the best method normalizing healthy
subjects. For the RMSD measure it yielded the second lowest score,
being not significantly different than Unified Segmentation with CFM
in the stroke dataset and also achieved the third lowest score for the
resected dataset. Nevertheless, its mean lesion volume post-
normalization was quite lower when compared to the one obtained
using Unified Segmentation with CFM. Another drawback is that it is
not fully automated, as masks must be depicted. On the other hand,
DARTEL with New Segment using (WM + CSF)/2 showed the third
highest NCC scores for the healthy dataset and the lowest RMSD scores
for both lesioned datasets. However, its mean lesioned post-
normalization volume was much lower than the one obtained by Uni-
fied Segmentation with CFM. The main advantage of this algorithm is
that it is fully automatic. Finally, Unified Segmentation with CFM was
worse than the other algorithms at normalizing healthy subjects, but
it showed the second lowest RMSD score for both lesioned dataset
and the highest mean post-normalization lesion volume. Its greatest
disadvantage is that it is very time consuming, as lesion masks have to
be drawn and besides, sometimes the images must be corrected to the
anterior commissure.

Finally, it is important also to consider the limitations of the present
investigation. First, the pool of 500 simulated lesions created has
increased the amount of covariance in the analysis, mostly due to the
fact that the same brain with different lesions is repeated twenty
times. Although Greenhouse-Geisser correction and paired t-tests
take the covariance of the data into account, this could affect the statis-
tical results. Second, a bias may have been introduced in the study by
performing a parameter search to tune the regularization parameter
for DARTEL. This parameter search was justified by the lack of previous
studies analyzing the optimal parameters to be used in lesion datasets,
in contrast to all the other algorithms analyzed in the present paper.
Unified Segmentation with CFM is considered in SPM the gold standard
in order to normalize brains with extensive injuries. Besides, it has its
own parameter search performed in previous studies (Andersen et
al., 2010; Crinion et al., 2007). ALI toolbox is an evolution of Unified
Segmentation and in Seghier et al. (2008) original manuscript, a
small parameter search to tune the number of iterations which could
improve segmentation was also carried out. SyN normalization perfor-
mance with lesioned brains has also already been compared (at least
qualitatively) to other normalization algorithms (Kim et al.,, 2007). Be-
sides, it has also been used to normalize a dataset of stroke patients
(Schwartz et al,, 2009) and in ANTS manual (Avants et al, 2011b)

some indications for the parameters to be used when normalizing in-
jured brains can be found. However, there is still a risk of bias, as the
parameter search is done on some of the same data that is later used
to test the performance of the normalization algorithms. Third, a differ-
ent type of regularization could have been used with DARTEL, as in this
study we used only four times the linear elastic default regularization.
The effects of using more regularization or membrane or bending ener-
gies (allowed by DARTEL) should be carefully investigated to deter-
mine if these modifications improve the results of the normalization
process. In addition, SyN is a very flexible algorithm with multiple pa-
rameters that could be adjusted. A different similarity metric rather
than cross-correlation, more iterations, higher gradient step, more or
Bspline regularization and higher radius of the correlation window
could be used to improve the normalization performance over lesioned
brains. Although volumes for SyN were corrected to make them com-
parable to the other methods normalized to the ICBM452 template,
they should be carefully chosen as the correction might not be perfect.
Parameters such as number of Gaussians per class, Bias FWHM or warp
frequency cut-off could also have been changed for Unified Segmenta-
tion and New Segment. The number of iterations in the ALI toolbox
could also be increased to evaluate if this factor affects the normaliza-
tion results. Fourth, the specific template created for SyN may have
given this method an advantage over the other algorithms. Neverthe-
less, DARTEL also uses a subject specific template, as it alternates be-
tween computing this template and warping all subjects' TPMs into a
better alignment. It is also important to note that ANTS environment
provides a fully automated program to compute the subject specific
template needed for SyN to work properly, just as DARTEL needs
New Segment (or an equivalent method) to provide the GM and WM
TPMs it needs as input. Finally, another highly detailed MRI template
as Colin27 could have been used as template for the SyN based algo-
rithms instead of creating a subject-specific one. However, these limi-
tations notwithstanding, we are confident that our results give a
general idea of the advantages and disadvantages of these ten different
ways of normalizing brains with large lesions.

Much research is still needed to create or improve fully automated
algorithms for the normalization of lesioned brains. For example, in-
creasing regularization or tuning the parameters under DARTEL
could eventually lead to DARTEL not reducing the lesioned volume
while getting the lowest RMSD score and being fully automated. An-
other possible approach would be to provide an automatic way to
create the masks of the lesions needed by Unified Segmentation
with CFM and SyN with CCFM. One option is to use the ALI toolbox
that, besides normalization, can also automatically identify and delin-
eate lesions and has been recently tested against manual methods
with very promising results (Wilke et al., 2011).

Conclusion

Our results show that, the large-deformation model and the im-
proved segmentations provided by DARTEL and New Segment with
(WM +CSF)/2 as a prior, provide a more accurate normalization
than Unified Segmentation with CFM, but with shrinkage in lesion
volume. The process of building a lesion binary mask can take from
30 min to 8 h for depicting the injury in a rough or a well-defined
manner (Andersen et al., 2010); thus, an automated procedure may
always be preferred. In this respect, DARTEL plus New Segment
(WM + CSF) /2 not only is fully automated but also achieves the low-
est significant root mean squared displacement score for every group
of interest, irrespective of the lesion type. Nevertheless, before the
abandonment of manual normalization procedures such as Unified
Segmentation with CFM, further research is needed, first of all to
solve the lesion volume reduction problem and also to take into ac-
count the effect of the normalization method on functional MRI data
(Crinion et al., 2007).
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