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Neuroimaging Analysis I:
Electroencephalography

Josep Marco-Pal larés, Este la Camara,
Thomas F. Münte and Antoni Rodr íguez-Fornel ls

COGNITIVE NEUROSCIENCE AND
NEUROIMAGING TECHNIQUES

Cognitive neuroscience has been termed the
biology of mind. As such it is, to a large
extent at least, a science about the human
mind, as many of the higher cognitive func-
tions, including language processing, episodic
memory and executive functions, can best or
exclusively be studied in human subjects. To
fulfil its promise, cognitive neuroscience is in
need of techniques that can serve as windows
to the brain as it carries out the processes that
make up the mind. Since human participants
are under study, these techniques need to be
non-invasive.

In light of this, the recent success of
cognitive neuroscience can be attributed to
two factors: the increasingly sophisticated
experimental designs that are borrowed from
cognitive science and psychology, and, the
methodological developments in neuroimag-
ing techniques.

In the present Chapter and the following
one we will concentrate on the two major and

most widely used neuroimaging techniques,
namely methods derived from electroen-
cephalography (EEG) and functional mag-
netic resonance imaging (fMRI). While EEG
has been around for about 80 years, recent
methodological advances in signal analysis
have led to a renewed interest in EEG-based
experiments. Functional MRI, while having
a much shorter history of little more than
15 years, has already reached a high level
of sophistication, but more developments
regarding analysis techniques are to be
expected.

For space reasons, we will not discuss other
neuroimaging techniques here, but would
like to point out that each of these possess
unique properties that make them valuable
tools in cognitive neuroscience. Near infra-
red spectroscopy (NIRS) uses near-infra-red
light to non-invasively measure changes in
the concentration of oxygenated (O2Hb) and
deoxygenated (HHb) hemoglobin. Light from
the near-infra-red spectrum can penetrate the
skull and reaches the underlying cortex, where
it is partly absorbed and partly reflected.
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From the amount of reflected near infra-red
light, it is possible to calculate changes in the
concentration of O2Hb and HHb. The main
advantage of NIRS is that it can be used
in participants that are not able to perform
tasks in a MRI scanner (e.g., infants, severely
compromised patients), and moreover with
tasks that could not be performed in a
scanner (such as pointing, object manipu-
lation, and so forth). Multichannel systems
can be used to provide data with reasonable
spatial resolution. We refer the reader to
Obrig and Villringer (2003) for a technical
description and Horovitz and Gore (2004)
for an application to a cognitive neuroscience
question.

Positron emission tomography (PET)
yields tomographic pictures of the brain
based on the decay of injected radioactive
tracers. Whereas PET studies of task-related
changes in blood flow (using 15O-labeled
water or butanol, for example) have mostly
been replaced by fMRI, PET gains increasing
importance in cognitive neuroscience
because of its ability to map neurotransmitter
changes during cognitive and other tasks (see
Monchi et al., 2006 for an application), and
the density of Alzheimer disease plaques
(see Cohen, 2007, for a review of the
technique).

Whereas transcranial magnetic stimulation
(TMS) might not be considered a neuroimag-
ing technique in the strict sense, the ability
to create virtual lesions in normal human
participants has great potential, in particular
when combined with other neuroimaging
techniques such as event-related brain poten-
tials (ERPs) (see Rollnik et al., 2004, for an
example) or fMRI (see, Ruff et al., 2008, for
an example).

SPATIAL AND TEMPORAL
PROPERTIES OF
ELECTROENCEPHALOGRAPHY
AND (FUNCTIONAL) MAGNETIC
RESONANCE IMAGING SIGNALS

When groups of neurons are involved in
information processing, they show a change in

their firing rate. The physiological phenomena
associated with this change can be detected
and recorded by several neuroimaging tech-
niques, i.e., EEG, magnetoencephalography
(MEG), fMRI or PET. Of these, EEG
and fMRI are currently the most widely
used brain imaging techniques. EEG is
usually recorded using between 16 to 128
electrodes that are placed on the intact
scalp, whereas fMRI provides information
about the hemodynamic response of several
thousands of voxels into which the brain
is divided. The spatial information of fMRI
(in the order of few mm) is therefore much
better than the one obtainable by EEG
(cm). This disadvantage of EEG is balanced
by its superb temporal resolution (millisec-
onds), which compares to several seconds
in fMRI.

Whereas the information provided by
fMRI and EEG respectively may in some
sense be viewed as complementary, with
fMRI answering the ‘where’ and EEG the
‘when’ question in neural processing, it
must be cautioned that there is no directly
established relationship between fMRI and
EEG signals (Logothetis et al., 2001). While
both signals are very different in nature
and in their temporal and spatial proper-
ties, they lend themselves to treatment by
similar mathematical and statistical methods,
because: (1) the spectral (1/f) behavior of
these signals indicate the participation of
neural activity on different scales; (2) they
both require extraction of the task-related
signal from background activity and noise
(i.e., noise of the recording device, muscle-
activity, heartbeat, head or eye movements);
and (3) the experimental designs used in
cognitive neuroscience are similar in EEG
and fMRI. The latter point is particularly
true since the introduction of event-related
designs in fMRI studies. In the following
sections, we will illustrate the different
analytical approaches used in EEG signal
[see also Chapter 29 (in this volume,
Camara et al.) for MRI analysis and those
methods of analysis which are common to
both techniques, e.g., independent component
analysis].
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ELECTROENCEPHALOGRAPHY AND
EVENT-RELATED BRAIN POTENTIALS

Basic designs

The basic experimental approach in using
EEG and ERPs in cognitive neuroscience
is, in principle, not different from that
in other areas of cognitive science. Rigid
control of participant behavior is usually
required, and care must be taken to isolate
the cognitive process under study by the
experimental manipulation. There are a few
aspects, however, in which basic designs
of EEG/ERP experiments differ from exper-
iments elsewhere in cognitive science or
experimental psychology. First, owing to the
low signal-to-noise ratio of single trial ERPs,
responses from multiple single trials need to
be averaged together. Depending on the size
of the component under study, a minimum
of 10 (e.g., in the case of the error-related
negativity) to up to several hundred (e.g.,
in the case of selective attention effects)
single trials need to be averaged together.
To generate enough trials to yield a reliable
and robust ERP might not be problematic in
most cases, but it can be a limiting factor in
other areas. For some experiments in psycho-
linguistics there are simply not enough stimuli
available (see Weyerts et al., 1997, for an
example).

A major advantage of the ERP approach
is that it is possible to study responses to
stimuli to which no overt behavioral answer
is required. We will illustrate this by two
examples taken from the areas of selective
attention and language processing. Consider
a typical selective attention ERP experiment
like the following: the participant is required
to look at the center of a video monitor.
Left and right of the fixation point, random
series of blue and red bars appear at a rate
of about three stimuli per second, most of
a certain height with a few just slightly
taller. The participant’s task is to attend to
a particular class of stimuli (e.g., the red
bars on the left) and to respond to the rarely
occurring slightly taller bars by button press.
In this situation, we are able to investigate

the attentional filter processes for the stimuli:
indeed, ERPs to all stimuli on the attended
side of the display show signs of (spatial)
attentional enhancement. Those stimuli that
share both location and color, but not height,
with the target stimulus are associated with
an additional selection negativity signifying
selection of the color feature (see Hillyard
and Münte, 1984, for a full description of
the experiment). Importantly, this information
about the hierarchical selection implemented
in the human brain would not be available with
purely behavioral measures.

In the domain of language research, partic-
ipants are often required to read materials in
order to perform a certain (mock) task. Such
a task might entail that participants need to
answer certain questions on the materials dur-
ing the break between experimental blocks.
Unbeknownst to the subjects, the materials
are manipulated in a certain way. Consider for
example the following materials (taken from
Matzke et al., 2002):

(1) Die begabte Sängerin entdeckte den talen-
tierten Gitarristen.

The gifted singer (Fem.Nom.?Acc.?) discovered the
talented guitar player (Masc.Acc.).

(2) Die begabte Sängerin entdeckte der talentierte
Gitarrist.

‘The gifted singer (Fem.Nom.?Acc.?) discovered the
talented guitar player (Masc.Nom.).

′

Meaning: The talented guitar player discovered
the gifted singer.

In both sentences, the first noun phrase
(die begabte Sängerin) is identical but case
ambiguous. It could be nominative (as in
(1)) and thus serve as the subject of the sen-
tence, or accusative case (as in (2)) and thus
serve as the object. Importantly, in German,
the dis-ambiguation of the sentence takes
place only at the second noun phrase (der/den
talentierte/n Gitarristen) but both versions of
the sentence are perfectly grammatical. By
studying the ERPs to these sentences in a
word-by-word fashion, it is possible to glean
information about syntactic processing in the
brain without directing participants’ attention
to the different grammatical constructions.
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Table 28.1 Types of stimuli in the attention
experiment

Location Color Height

Left/red/tall + + +
Left/red/small + + −
Left/blue/tall + − +
Left/blue/small + − −
Right/red/tall − + +
Right/red/small − + −
Right/blue/tall − − +
Right/blue/small − − −

Note that functional imaging with fMRI
shares some of these advantages. Indeed, an
fMRI study using the same materials has been
performed (Bahlmann et al., 2007).

The experimental examples discussed so far
have (implicitly) made use of the subtraction
logic first introduced to psychology by the
Dutch scientist Donders. Indeed, such logic
underlies many ERP and fMRI studies.
Consider the attention experiment mentioned
above. Again, we examine the situation in
which the tall red bars on the left are attended.
The other types of stimuli can be classified as
shown in Table 28.1.

By rotating attention conditions, several
different ERPs can be recorded for each
particular stimulus type. The effects of
attentional selection by location, color and
size can thus be obtained by subtraction of the
different ERPs. It has, however, been pointed
out that such logic assumes that there is no
interaction between the different processes
under study, an assumption that is not true in
every case. Alternatively therefore, factorial
designs may be employed (see Osman, 1998;
Sternberg, 1998).

Standard statistical analysis of
electroencephalography
event-related brain potentials
(time-domain approach)

Event-related potentials can be thought of as
minute voltage fluctuations that are buried
within an ongoing EEG. Therefore, ERPs
benefit greatly from signal averaging to
enhance their signal-to-noise ratio (SNR).
To this end, biosignals are digitized at a fixed

rate (for cognitive ERPs 150 to 1000 points
per second and channel are usually recorded).
Together with the EEG trigger events (related
to the onset of a stimulus, a response, or
a movement), are recorded. The events of
interest are repeated and a time-locked signal
average is then calculated across the trial
epochs for each time point of the epoch.
Formally, this can be expressed as follows:
if Xj(t) represents the voltage at a particular
electrode at time t and trial j, the signal
average is defined as:

Xt = 1

J

J∑
j=1

Xjt (1)

Usually, Xjt is considered the sum of signal of
interest St plus random noise Njt (background
EEG and measurement error). Using this
method, signal averaging improves the SNR.
However, note that this view, as discussed
below, might not be entirely true as it seems
that at least some parts of the ERP are brought
about by phase resetting of the ongoing EEG.
The signal power σ̂ 2

s , noise power σ̂ 2
N , and

SNR can be estimated using:

σ̂ 2
s = 1

T

T∑
t=1

X̄2
t − 1

J
σ̂ 2

N

σ̂ 2
N = 1

T (J − 1)

J∑
j=1

(
T∑

t=1

(
Xjt − X̄2

t

)2
)

≈ Variable X̄t

SNR = σ̂ 2
S

/
σ̂ 2

N (2)

One of the key assumptions of signal
averaging is that the signal is invariant across
trials. This is clearly not the case, as it
has been shown that some ERP components,
such as the P300, vary in a trial by trial
manner. If, for example, latency jitter is
present for a specific component this will lead
to a smearing out of the component in the
signal average, and the peak amplitude of
the average will thus not properly reflect the
component’s amplitude in single trials. For
certain purposes, realigning the single trials by
moving a template (usually the conventional
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average or part of a sine-wave) across the
single trial epoch and searching for the time-
point at which the template and the single
trial have the greatest cross-correlation has
therefore been tried. This time-point is then
used to realign the single trials (see, for
example, Wastell, 1977).

Prior to quantifying waveform changes in
the average potential, it can be advisable
to apply filters that enhance the signal-to-
noise ratio for the effects of interest. For
example, the error-related negativity (ERN)
(see Gehring et al., 1995) has a frequency
around 5–6 Hz. To remove contamination by
overlapping slow positive waves and by high
frequency activity, it might be useful to apply
a band-pass filter to remove activity below 2
Hz and above 8 Hz to best bring out the ERN
activity.

After the average ERP is obtained for sev-
eral experimental conditions, say for stimuli in
the right visual field while they are attended
and for the same types of stimuli when they
are outside of the focus of attention, the next
analysis step is waveform quantification (for
an introduction to standard ERPmeasures, see
Luck (2005) and Picton et al., 2000). The
waveforms are characterized by peaks and
troughs that lend themselves to quantification
(see Figure 28.1 for an illustration). The usual

Figure 28.1 Typical parameters determined
from the event-related potential waveforms.
I. Peak amplitude. II. Peak latency. III. Mean
amplitude/area. IV. Peak-to-peak amplitude.
Refer to color plates at the end of this
volume for a colored version of this figure.

practice is to determine amplitudes relative
to a baseline period (e.g., −100 to 0 ms
relative to the onset of the event). The voltage
of the baseline period is set to 0. Typical
parameters that are determined from the
waveforms are:

(i) Peak amplitude: the most negative or most
positive point relative to the baseline is
determined within a defined time window.

(ii) Peak latency : the latency of the most
negative of most positive point within a time
window is determined relative to the onset
of the time-locking event.

(iii) Mean amplitude: the mean amplitude within
a given time window is determined; this
measure is equivalent to an area measure.

(iv) Peak-to-peak amplitude: in cases were
several peaks and troughs occur in quick
succession it might be adequate to deter-
mine the amplitude difference between two
successive peaks.

(v) Onset latency : the onset latency of a com-
ponent is notoriously difficult to determine.

Several suggestions have been made to give
an estimate of the onset latency. For example,
it might be estimated by determining the
time-point at which the amplitude of the
rising flank of the component has reached
15% (or some other fraction) of the peak
amplitude. This is known as fractional
amplitude latency. Alternatively, fractional
area latency might be determined.

Sometimes, the determination of the onset
latency is problematic because of residual
noise in the waveform. Miller et al. (1998)
have therefore suggested a ‘jack-knifing’
method based on measuring the difference
in the onset latencies of two experimental
conditions. While this method has been sug-
gested for the measurement of the lateralized
readiness potential (LRP), it can readily be
applied to other components as well (see
Banfield et al., 2006, for an example).

Before measurements are taken of wave-
forms, it is sometimes useful to perform
waveform subtraction to reduce the effects
of component overlap and to bring out the
effect of a specific experimental manipulation.
Consider, for example, a selective attention
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paradigm in which stimuli in the right visual
field are attended in one condition and not
attended in another. If the waveforms obtained
in the unattended condition are subtracted
from those in the attended condition, the
resulting difference wave presumably reflects
the attention effect proper, and quantification
of the difference wave should therefore
provide a direct measure of the neural
correlates of selective attention. However, the
computation of difference waves is not a good
idea in every case. Consider the situation
in which a peak is shifted in latency from
one condition to the next, where subtraction
will introduce a ‘ghost-component’ into the
difference wave that will be misleading in the
interpretation.

One important advantage of the ERP
technique is that the resulting data are mul-
tidimensional, and that the spatial distribution
of effects can be taken into account. Indeed,
measurements are usually obtained from
several electrode sites, and the resulting data-
sets lend themselves to statistical analysis by
repeated measures analysis of variance (with
electrode-sites being treated as one or more
factors). One of the potential strengths of such
an approach is that conditions can not only
be distinguished by effects at certain scalp
sites, but also by a differential distribution
of an effect across multiple scalp sites. The
latter would be reflected by a condition x
electrode-site interaction in an analysis of
variance. In such a situation, one might be
inclined to assume that neural generators
that are at least partly different might be
at work in the two conditions. McCarthy
and Wood (1985) have pointed out, however,
that there is a fundamental incompatibility
between the additive model upon which
analysis of variance (ANOVA) are based and
the multiplicative effect on ERP voltages
produced by differences in source strength.
Using simulations, they showed that highly
significant interactions involving electrode
location can be obtained between scalp
distributions with identical shapes generated
by the same source. They suggested a
scaling method to eliminate overall amplitude
differences between experimental conditions

before an ANOVA is performed. In other
words, McCarthy and Wood (1985) suggested
that condition x electrode-site interactions
that survive vector scaling are indicative of
true differences in neural generators between
conditions. More recently, however, it has
been pointed out by Urbach and Kutas,
(2002) that even for ideal distributions of
generators and surface potentials, the extent
to which vector scaling refines conclusions
about generator distributions is limited: ‘prior
to amplitude normalization, differences in
scalp distributions show that neural generators
differ in some combination of location,
polarity, and relative or overall strength. After
amplitude normalization, residual differences
merely attest to the fact that neural generators
differ in some combination of location,
polarity, or relative strength, that is, that
they differ in spatial configuration. Of all
the possible combinations of differences in
generator locations, polarities, and strengths
that could account for the different scalp
distributions, amplitude normalization at best
only rules out one special case: namely,
where the generators in the two conditions
all have the same locations and polarities and
differ in strength by the same multiplicative
factor (Urbach and Kutas, 2006). In this
sense, these researchers suggest that non-
normalized data should be used in assessing
condition x electrode-site interactions (see
further discussion in Luck, 2005).

The measurement techniques discussed so
far reveal data about peaks and troughs
of the waveform, but not necessarily
about ERP components. In neurophysiologi-
cal/psychological terms, a component can be
thought of as being generated by a neural
or cognitive process, while in a statistical
sense a component explains experimental
variance (see discussion for conceptual issues
regarding ERPs, Rugg and Coles, 1996).
Peaks and troughs may thus come about by
the superimposition of several components.
There have been a number of suggestions
for decomposing ERP waveforms in order
to isolate their components, among them
principal component analysis (PCA) or, more
recently, independent component analysis
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(discussed in Chapter 29). PCA uses the
time points on waveforms from different
subjects, different electrodes, and different
experimental conditions to define components
(for details, see Picton et al., 2000). In sta-
tistical terms, PCA identifies orthogonal axes
of maximal variance in a multidimensional
space defined by the variables. Generally,
these axes are rotated according to the varimax
procedure, which introduces a certain degree
of arbitrariness. PCAsolutions are not unique,
as many rotations of the factors are possible.
Also, the selection of experimental conditions,
electrode sites, number of subjects and so on
will determine the factor structure of a given
experiment. Thus, it is difficult to compare
factor structures across experiments and to
identify components across different studies.

Statistical analysis of multichannel EEG
data is problematic, since the many channels
and multiple conditions in one experiment
often call for multiple statistical tests, thereby
increasing the chance of type I errors
(rejecting the null hypothesis when it is true).
The best way to circumvent this problem
is by replication of initial findings in a
second independent group of subjects, i.e.,
by running a confirmatory study. The typical
corrections used to compensate for increased
type I error (e.g., Bonferroni type corrections)
may over-correct, since data from adjacent
electrodes are correlated and not indepen-
dent. Whereas rigid and theoretically well-
grounded methods for statistical corrections
have been described in functional imaging and
have become standard procedures in that field
(see below), such procedures have been less
widely performed in ERP research and are far
from being standardized.

Artifact rejection and correction
algorithms

Prior to further processing and averaging,
the EEG has to be checked for undesirable
electrical noise and artifacts resulting from
movements, eye movements and blinking,
and muscular activity. Artifacts may either
be rejected (i.e., those stretches of the

signal contaminated are removed from further
processing) or corrected.

For artifact rejection, the most widely used
criterion is to establish a threshold value for
artifact amplitude (usually between ±50 and
±100 μV). Another common procedure is
to reject those trials that present a specified
abnormally steep slope or drift. Finally,
trials presenting technical problems (such as
amplifier saturation) are also removed from
further analysis. If participants are not given
specific instructions about artifacts or visual
feedback about the effects of blinking and
moving in the EEG, between 15% and 30%
of the trials require rejection. However, if
participants collaborate and brief pauses or
blinking periods are introduced (if possible
incorporated into the design of the task), the
rejection rate is about 10%.

Such ‘rejection’ techniques will be prob-
lematic in situations in which the number of
trials per condition is very low (e.g., below
25), which is the case, for example, in some
psycho-linguistic studies, or in studies with
patients or special populations (newborns,
children, etc.). Thus, it is necessary in
such cases to remove the noise from the
contaminated signal in order to be able to use
most of the trials in the averaging process.
Most commonly used algorithms for cleaning
blinks and ocular movement are based on
regression analysis. In this type of analysis,
the contamination of each electrode by a cer-
tain type of artifact is assessed by computing
a propagation factor, which is used to remove
the estimated signal influence (Verleger et al.,
1982). Another approach is to use dipole
modeling to isolate the ocular activity (Berg
and Scherg, 1991).Although the latter method
seems to work reasonably well (see Lins et al.,
1993), the most important problem of such
approaches is that ocular electrodes might also
pick up EEG activity proper and that these
methods might therefore also remove part
of the signal of interest. Alternatively, it has
been proposed that the application of Blind
Source Separation techniques to EEG/ERP
data can reliable remove ocular, muscular and
electrical noise artifacts from the raw signal
(Jung et al., 2000).
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Source analysis

While temporal information can be readily
inferred from a scalp-recorded EEG, the ques-
tion as to where a particular signal is coming
from has been of interest for EEG researchers
from the very beginning, first to localize focal
(epileptic) activity and nowadays to pinpoint
neural structures responsible for particular
cognitive operations.

A first important issue in the localization
of the sources of the EEG is the use of an
adequate number of electrodes. While the
recording, storage and analysis of up to 256
electrodes is no longer technically a problem,
increasing the number of electrodes will
prolong the recording session. Thus, a com-
promise between the number of electrodes
and the time needed to run the experiment
is necessary. Lantz et al. (2003) have shown
that going from 32 to 64 electrodes markedly
changes localization results, but that a further
increase of electrode density yields little
additional precision.

Electrogenesis of scalp potentials
The electrical potential recorded in the scalp
is a consequence of the electrical activity
of large assemblies of neurons that are
activated synchronously. Although the exact
electrogenesis is not fully understood, it is
supposed that the activity registered using
EEG is related to the influx of positive ions
across the post-synaptic membrane when a
neurotransmitter is released. In addition, there
is a re-distribution of charges in the outer
part of the membrane. If several (thousand)
neurons depolarize synchronously, the total
net current can be recorded at the scalp by
using macro-electrodes (see Figure 28.2Aand
B and Nunez and Srinivasan, 2005).

The surface activity is very dependent on
the position and geometry of the neurons
involved, as can be seen in Figure 28.2C.
Hence, ‘closed field’ configurations, where
neurons are not aligned in parallel may not
produce detectable fields at the scalp. In
addition, the electric potential presents a very
fast decay with distance (see Figure 28.2D),
and is further attenuated by the tissues

between the source of the potential and
the scalp electrode (i.e., skull and scalp).
Hence, EEG is dominated by activity from
those areas presenting an ‘ordered’ geometry
and relatively close to the scalp. Pyramidal
neurons in the neocortex are thus the main
generators of EEG signals. They comprise
three-quarters of all cortex neurons and can
fire synchronously, because of the local
density of excitatory interneurons. Whereas
electrical activity from subcortical structures
is less well detected given the non-ordered
nature of the cell assemblies and the long
distance to the scalp, activity of some
structures such as auditory nerve or some
brain stem structures can be detected at
the scalp. Because the activity of interest
is very small in these cases (less than 1
μV; see Harkins, McEvoy, and Scott, 1979),
many hundreds or even thousands of stimulus
repetitions are necessary.

The application of the physical rules of
electromagnetism (the Maxwell equations)
to the brain electromagnetic currents allows
establishing two main problems. The forward
problem states that, given a source and
the electrical characteristics and position
of the different layers of the brain, we
can unequivocally determine the electrical
potential generated by this source. In contrast,
the goal of an inverse problem is to find
a solution that is compatible with certain
voltage distribution. Unfortunately, infinite
solutions exist compatible with a certain
voltage map given that this is an ill-
posed problem. Although some physiological
constraints (see below for implementations)
can be reasonably imposed (i.e., sources of
EEG can only be generated in the brain),
the inverse problem continues to be a
challenge.

Scalp current density
A first approach in increasing the spatial
resolution of the EEG is the application
of the scalp current source density scalp
current density (SCD) approach. It is based
on the application of a 2D Laplacian operator
(∇2) in two dimensions to the scalp EEG
potential data. It can be demonstrated that this
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Figure 28.2 Electrogenesis of brain potentials. (A) Current flow generated in a neural
assembly of pyramidal neurons. (B) The direction of the current flow in the brain depends on
the position of pyramidal neurons in the brain. (C) Voltage activity generated in the scalp by
a radial (blue dipole, left scalp voltage) and tangential (red dipole, right scalp voltage)
electrical dipole. (D) Voltage activity generated in the scalp by a deep (green dipole, left scalp
voltage) and superficial (yellow dipole, right scalp voltage) radial dipole. Refer to color plates
at the end of this volume for a colored version of this figure.
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measure is equivalent to finding the variation
of the normal component of the electrical
field, and that it is related to changes in the
normal SCD, creating ‘sources’ and ‘sinks’
of current density. Another interpretation of
the Laplacian operator is that it acts as a
spatial high-pass filter, enhancing the spatial
resolution but also amplifying the noise of the
signal. Several techniques have been proposed
for computing the SCD, with the Hjorth
method (Hjorth, 1975) and spherical splines
(Perrin et al., 1989) being the most widely
used.

An example of the advantages of using
SCD instead of voltage data can be found
in Figure 28.3. Two sources located in the
left and right supratemporal cortex generate
a midline frontocentral voltage distribution.
The application of an SCD algorithm suggests
two sources, corresponding to the two internal
generators. In spite of the favorable result

in this example, the application of SCD
can be also very problematic because of
noise amplification. Also, it can only provide
information about possible surface sources,
because voltage fields generated by deep
sources dissipate and spread across the
scalp.

The inverse problem
The inverse problem consists of finding the
current density sources that produce a certain
voltage. It is inherently ill-posed as there is no
unique solution for solving the problem.

Source estimation procedures can be
divided in two main groups: dipolar solutions
and distributed solutions. In dipolar solutions,
the number of sources that are used in the
modeling is set a priori based on a priori
constraints (e.g., anatomical or physiological
information). Then, this fixed number of
dipoles is placed in the brain and their position

Figure 28.3 Illustration of source current density (SCD) computation. Two dipoles are placed
in the scalp at temporal areas. The isovoltage map shows a central positivity. The application
of an SCD algorithm distinguishes two sources. As can be seen, the picture given by the SCD
is closer to the real source configuration. Refer to color plates at the end of this volume for a
colored version of this figure.
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and orientation is found by minimizing
the difference between the scalp potential
produced by the dipoles (computed using
the forward solution) and the real scalp
potentials. In the distributed models, the head
(or only those regions that can reasonably
be assumed to generate brain potentials) is
divided into a large number of voxels and
a solution is found by imposing certain
constraints.

Dipolar solutions
Given a certain geometry (location of the
different tissues), the voltage produced by
a dipole located in any part of the brain
can be easily computed (forward model).
The first solutions of inverse problems used
the forward solution to solve the inverse
one. The idea was simple: the number of
sources (dipoles) was defined a priori and
different plausible physiological locations
were selected for the dipoles. Also, the
orientation of the dipoles could be defined
a priori based on physiological parameters
(i.e., the same orientation as the corresponding
pyramidal neurons). The forward problem
was computed for all possible solutions, and
the voltage map that best explained the real
voltage distribution was selected. In addition,
the explained variance of the solution gave an
estimate of the goodness of fit of the dipolar
solution.

Although in use for more than 20 years
(Scherg and von Cramon, 1985), dipolar solu-
tions are still popular given their simplicity
and the fact that they provide good solutions
when few and spatially circumscribed sources
are expected that contribute to the observed
distribution.They do, however, have a number
of limitations. First, the number of dipoles
of a solution has to be defined a priori.
Second, selecting a large number of dipoles
increases computation time significantly,
making it unfeasible to work with many
sources.

Distributed models
Distributed models search for the solution of
the inverse problem in a 3D mesh composed
by a large number of voxels (generally

exceeding the number of electrodes used to
register the data). The problem is generally
ill-posed, since there are more solutions than
equations. There are several different ways of
tackling this problem, and the most commonly
used are dealt with below.

L2 norm solutions.
These are based on minimization of the
modulus of the density vector; in other
words, choosing the minimum energy vector.
Depending on the choice of the constraints
imposed to the problem, solutions can present
different characteristics. The most frequently
used is the weighted minimum norm solution
with low-resolution tomography (LORETA),
which is based on the weighted modulus min-
imization by a Laplacian operator (Pascual-
Marqui et al., 1994) resulting in a smoothed
solution. This is one of the most widely used
methods for EEG source localization.

L1 norm solutions
In L1 norm solutions, the minimization is
performed using the L1 norm. One of the
most popular applications of the L1 minimum
norm is the FOCUSS approach (Gorodnitsky
et al., 1995). In general, L1 solutions provide
sources less sparse than L2 minimum norm
solutions, but their application is difficult
because they must be computed recursively.

Other solutions
Other solutions proposed to solve the inverse
problem are:

• Standardized solutions : based on standardization
of the estimation of the currents, given the
covariance matrix of estimated noise (Dale et al.,
2000; Pascual-Marqui, 2002).

• Beamformer solutions : based on spatial filters
(Van Veen et al., 1997).

• Biophysical restrictions based solutions : i.e.,
ELECTRA (Grave de Peralta et al., 2000).

• Combination of two different solutions: i.e.,
shrinking LORETA-FOCUSS (Liu et al., 2004).

The impact of these solutions in the literature
is limited at present and therefore they are not
discussed in any more detail.
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Analysis of the frequency
components of
electroencephalography

Spectral properties of
electroencephalography
A remarkable property of the EEG is its oscil-
latory behavior. Traditionally, the frequency
bands have been divided into delta (1–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–25
Hz) and gamma (> 25 Hz) bands. Systematic
changes to these EEG bands can be found as
a function of behavioral states (i.e., sleep or
wakefulness), cognitive tasks, drug intake or
neuropsychiatric disorders. The description of
such spectral components is therefore a key
aspect of EEG studies.

The most widely used spectral analysis
approach is based on the fast Fourier trans-
form (FFT). As stated by the Fourier theorem,
a signal s(t) can be decomposed as a sum of
sinusoidal signals. In the Fourier approach,
this can be written as:

s(t) =
∫ ∞

−∞
S(ω)e2π iωtdω (3)

being:

S(ω) =
∫ ∞

−∞
s(t)e−2π iωxdx (4)

S(ω) are complex coefficients, whose square
gives a measure of the power at the frequency
ω. This is the value that has traditionally been
used to determine the power of each EEG
frequency band.

To illustrate this, in Figure 28.4 we
have generated a signal composed from two
sinusoidal signals: one with a frequency of
5 Hz, and the other with a frequency of 17
Hz and half the amplitude of the first. In
addition, we have added some white noise to
the signal (Figure 28.4A and B). The Fourier
theorem can then be applied to the resulting
signal. The left part of Figure 28.4C shows
the result of the complex S(ω). Two maxima
corresponding to the sinusoidal signals are
found. To better see these values, we can
compute the power spectra of the signal

by squaring S(ω). In this representation, we
can clearly see two peaks at the frequencies
corresponding to the component signals.

The need for time-frequency approaches
One of the main problems of the FFT and
related methods is the fact that temporal
information is lost in the computation of the
spectral content, which is not always adequate
in the study of cognitive functions. Although
some states change the global spectral content
of the EEG (i.e., the presence of slow waves in
the deep sleep is greater than in awake states),
their spectral properties may change rapidly
in other conditions, i.e., after a stimulus
presentation, during the performance of a task,
etc. In such situations, short-lived changes in
certain frequency bands may occur that need
to be detected by adequate methods.

In Figure 28.5 we have illustrated an exam-
ple of two different trials that present similar
responses. At 200 ms there is an alpha band
(10 Hz) response and at about 700 ms there
is an increase in the beta range (20 Hz) that
lasts 100 ms. The FFT analysis (Figure 28.5B)
shows a global increase in the 5–20 Hz range
but there is neither a clear delineation of the
frequencies involved nor any information on
the timing. However, when performing a time-
frequency analysis, a clear enhancement of the
alpha band from 100 to 200 ms and of the beta
band from 700 to 800 ms is seen. Hence, the
information provided by the time-frequency
approach is richer and more appropriate for
cognitive neuroscience applications.

Figure 28.5 also shows another important
aspect of the time-frequency approach. The
two examples are not only different in their
spectral content (10 and 20 Hz, respectively),
but also in their phase. As can be observed,
the activity in the first example is phase
locked; that is, its peaks and valleys coincide
in time with regard to the stimulus. This
results in a clearly visible ERP (mean of the
single trials), a type of response known as an
evoked response. While the increase in power
occurs at similar time points, the responses
are not phase locked in the second example
(the vertical red line coincides with a peak
in the first trial and a valley in the second
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Figure 28.4 Fourier transform computation. (A) A signal is created combining three original
signals: a 5-Hz signal, a 17-Hz signal and random noise. (B) By adding the two sine wave
signals and the noise, a combined signal is obtained. (C) The left panel shows the complex
signal of the fast Fourier transform (FFT) applied to the data. Each complex point in the graph
is associated with a specific frequency. Two main frequencies are retrieved with peaks at 5
and 17 Hz. The right panel shows the square of the magnitude of FFT at each frequency. Again,
two main peaks reflect the frequencies of the initial signals. Note that square of the
magnitude of the 5-Hz signal is greater than the 17-Hz signal, as in the original signals. Refer
to color plates at the end of this volume for a colored version of this figure.

trial). Hence, in a time-domain average, the
responses are partially or totally cancelled
and therefore do not contribute to the ERP
(or produce only a very small signal, as
in Figure 28.5). Note that this problem is
usually greater for fast oscillations than for
low frequency oscillations, as well as for
oscillations with a longer latency with regard
to the stimulus onset.

However, the mean of single trial time-
frequency decompositions does show a
response that it is not affected by the
cancellation effect. Such non-phase-locked
responses are known as induced responses.
The detection of induced responses requires
single-trial time-frequency analysis. The dif-
ferent nature of evoked and induced responses
also underscores the importance of studying
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Figure 28.5 Trial by trial time-frequency decomposition. (A) Two trials are depicted with two
signals in each: a 10-Hz signal time-locked with respect to the stimulus onset (evoked activity)
and a 20-Hz non-phase-locked signal (induced activity). The average of the signals is observed
in the corresponding ERP waveform. In this average waveform, the 20-Hz signal has almost
been abolished in the time-domain average. The time-frequency decomposition of the
average ERP waveform (right) shows only the increase at the 10-Hz but not at 20-Hz signal.
In contrast, the time-frequency decomposition of each single trial shows both signals, and this
information remains when both decompositions are subsequently averaged together (right
panel). Hence, induced activities cannot be studied by applying time-frequency analysis to the
averaged ERP responses. (B) The FFT similarly fails to detect both signals. Refer to color plates
at the end of this volume for a colored version of this figure.

the phase of the signal. Indeed, some studies
have demonstrated that the phase of the EEG
can be altered during cerebral processing
(Fuentemilla et al., 2006; Makeig et al.,
2002)1. Given that the phase of the signal
can only be studied effectively in single-
trial data, a complete time-frequency study
should involve time-frequency trial by trial
computation of any increase/decrease of
power and phase alignment of the signal. To
quantify the degree of phase alignment, a

measure referred to as inter-trial coherence
(ITC) (Makeig et al., 2002) or phase-locking
factor (Tallon-Baudry et al., 1996) is used:

ITC = 1

n

∣∣∣∣∣
n∑

i=1

Si(ω)

|Si(ω)|

∣∣∣∣∣ (4)

where Si(ω) is the coefficient at frequency ω
of the i-th trial. ITC gives a measure of the
degree of similarity of phase over different
trials. It ranges from 0 to 1, with 0 indicating
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a randomly distributed phase over different
trials, and 1 a perfect match of phase in
different trials.

Application of frequency analysis to
electroencephalography data
In the following section, we will describe three
of the most widely used methods: (1) the
classical method for computing event-related
synchronization/desynchronization (ERS and
ERD) based on filtering the data at different
frequency bands; (2) the short FFT method,
in which the data is divided into windows
of identical length to which FFT is applied;
and (3) the wavelet analysis, where the same
mother wavelet is contracted or dilated to
variable length windows.

The first proposal to analyze changes in the
power of brain electrical signals was made by
Pfurtscheller and Aranibar (1977) to assess
increases (ERS) and decreases (ERD) of
power in certain frequency bands as compared
to baseline (see Figure 28.6C): (1) the EEG
single trial data is first filtered at the selected
frequency band; (2) the amplitude is then
squared and the mean of all trials is computed;
finally (3) the percent of increase/decrease of
power with respect to baseline is computed.

In the short fast Fourier Transform (SFFT),
an FFT is applied to successive short time
intervals (see Figure 28.6D). The original
signal is convoluted by using sinusoidal
signals in a fixed temporal window, obtaining
estimations of the power and phase at different
frequencies and time ranges. The problem
comes from the use of a fixed time window to
compute the FFT: if good temporal resolution
is needed, a short window is required, whereas
a good frequency resolution requires long
windows. In other words, there is a trade
off between the temporal and frequency
resolution, as short time windows comprise
less cycles for the sine signals and hence
lead to bad spectral resolution. Increasing
the length of the windows, on the other
hand, decreases temporal resolution. This
problem has limited the use of SFFT in
EEG analysis.

Finally the most widely used method is
wavelet analysis (illustrated in Figure 28.6E),
in which the signal is not convoluted by a sine

or a cosine, but by a certain signal, namely
the mother wavelet. The shape of this signal
is the same for all frequencies, but the mother
wavelet is expanded or contracted depending
on the frequency studied (based on a certain
parameter, called the scale a).The convolution
is performed at all the time points by moving
the wavelet across time using a certain latency
shift b, which led to the name continuous
wavelet transform (CWT). Mathematically,
the convolution between the signal s(t)and the
mother wavelet ψ (

b,at)can be written as:

Wψb,a s(t) =
∞∫

−∞
s(t)ψ∗

b,a(t)dt (5)

being ψ(t) the mother wavelet and ψb,a(t):

ψ
(
b,at) = 1√

a
ψ

(
t − b

a

)
(6)

Several mother wavelets can be used in the
computation of the EEG. The most widely
used are the morlet and complex morlet
wavelets that comprise a sinusoidal function
enveloped by a Gaussian.

As can be seen in Figure 28.6D and E,
there are some differences between SFFT and
wavelet analysis: in short FFT the length of
the windows used is constant, whereas in
wavelet analysis they change with frequency.
While in short FFT the number of cycles of
the sinusoidal signal changes with frequency,
the shape of the wavelet is always the
same in wavelet analysis. However, in the
latter method, there is an inverse relationship
between the length of the window in the time
and frequency domains: when the frequency
increases, the length of the window is shorter
in the time domain, but larger in the frequency
domain.

One common aspect of all three methods
is that after the application of the particular
algorithm, data are squared to avoid cancel-
lation when averaging different trials and to
convert complex numbers (i.e., in complex
morlet wavelets) to real power. For most
applications, power changes need to be related
to a certain baseline. Thus, the interest is not
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Figure 28.6 Illustration of methods for analyzing the spectral content of a brain electrical
signal. (A) A real electroencephalogram (EEG) waveform is used for the analyses. (B) The static
approach using a fast Fourier transform (FFT) provides no temporal information. The signal
presents a typical 1/f decay, with a decrease at 50 Hz due to a notch filter applied to the data.
(C) Classical method for time-frequency decomposition. The data is band-pass filtered,
squared and referenced to a baseline. (D) Short-time FFT. An FFT is applied in fixed temporal
windows. Then the data is squared and referenced to baseline. (E) Wavelet approach. A
wavelet analysis is applied. In this analysis, the temporal and frequency windows vary their
length as a function of the frequency. Finally the data is squared and referenced to baseline.
Refer to color plates at the end of this volume for a colored version of this figure.
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in the absolute value of the power at a certain
frequency, but its task- or state-related relative
increase or decrease. Referencing the baseline
also avoids problems due to the 1/f behavior
of EEG data, which generally leads to greater
power at lower frequencies (see, FFT in
Figure 28.6B).

Statistical analysis of
electroencephalography oscillatory activity
While the power computed by spectral
techniques follows a χ2 distribution (Kiebel,
et al., 2005) have demonstrated that certain
transformations of the spectral data allow the
use of the general linear model (GLM) for
analysis. One way of performing tests is to
compute the average in a spectral and tempo-
ral window. The central limit theorem ensures
that these averages will follow the Gaussian
assumptions. Averaging over several trials
is similar. For single trial analysis, log or
power transformations generate distributions
close to Gaussian. The conclusion of Kiebel
et al. (2005) therefore was that EEG power
measures can be analyzed using parametric
statistics.

A different approach has to be taken with
the analysis of phase. Typically, phase is
not analyzed individually but by using ITC
(Equation 17), that is a measure of the
degree of the coherence between different
trials. Statistical analysis of such data can be
performed by using bootstrap analysis (see
Makeig et al., 2002), or non-parametric tests
(i.e., U-Mann Wilcoxon or Kruskal–Wallis
test). Although ITC follow a Raleigh rather
than a normal distribution, some studies have
nevertheless used parametric tests (ANOVA).

Finally, it has to be noted that time-
frequency analysis suffers from a severe
multiple comparisons problem. Imagine a
study with 64 electrodes, with epochs of
600 ms length at 500 Hz sampling rate
(300 points) and frequencies studied from
1 to 45 Hz. If comparisons are performed
point by point, this yields 864,000 possible
tests (64 electrodes x 300 time points x
45 frequencies). This is very similar to
the number of comparisons performed in
fMRI studies. However, in contrast to fMRI,

the multiple comparison problem in time-
frequency analysis has received only limited
attention.

To avoid the multiple comparisons prob-
lem, many time frequency studies focus their
statistical comparisons on certain spectral-
temporal windows and electrodes where the
desired effects seem to be present. This
a priori approach reduces the number of
comparisons and possible false positives, and
hence, the problem associated with them.
A more straightforward solution is based
on non-parametric permutation tests (Maris
and Oostenveld, 2007). In this approach, the
two conditions are compared by means of
a standard statistical test (i.e., t-test), and
points presenting statistical values greater
than a certain value are selected. Clusters
are created by joining adjacent points on a
temporal, spectral and spatial (i.e., electrodes
closer than 4 cm) basis. Then, a cluster-
based statistic is computed on the sum of
the values of the statistical test used in a
cluster, and the maximum of these values
among the different clusters is selected. The
next step is the creation of a large number
of random partitions by randomly assigning
single trials to the ‘conditions’. The statistical
test is computed for each random partition,
and in the points of the cluster presenting
the maximum cluster-based statistics. This
creates a histogram of the random partitions.
Finally the proportion of random partitions
that result in larger test statistics than
the cluster-based statistics previously found
is computed (p-value). Clusters presenting
a p-value smaller than the critical alpha
level (usually 0.05) are then accepted as
presenting significant differences between
conditions.

CONCLUSIONS

In the last 30 years the utilization of EEG sig-
nals for studying brain functions has suffered
an important impulse. EEG measurements
have evolved from pure clinical settings
(i.e., diagnostic of epilepsy, polysomnog-
raphy, exogenous evoked potentials, etc.)
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to become one of the most non-invasive
techniques used to the study brain functions
and cognitive processes. In addition, it is
the only technique (with MEG) that allows
non-invasively studying brain functioning
at the sub-second temporal domain. One
important reason for this reborn has been
the incorporation of EEG to the study of
cognitive functions, such as language and
executive functions. These domains were
traditionally studied using behavioral data,
but the incorporation of new experimental
paradigms has allowed investigating the
electrical signatures and oscillatory changes
related to these functions. In this regard,
several discoveries were critical in the devel-
opment of the research in these fields, as
for example, the N400 component (related
to semantic analysis), P600 (associated to
syntactic processing) or the error-related
negativity (associated to the detection of
erroneous responses). At the same time, and
more recently, the advent of new techniques
of analysis has allowed a richer interpretation
of the results and has opened a door for
new ways of studying electrical responses
associated to cognitive functions. Therefore
the analysis of brain oscillations and their
properties (changes in power and phase)
by means of time-frequency analysis is
today very important in order to have an
accurate description of brain functioning and
brain dynamics. In addition, the possibility
of localizing the neural sources of brain
electrical activity allows better interpretation
of results and the confirmation of existing
brain-wired theories or neural-constrained
cognitive models. However, the information
provided with localizing techniques has to be
always interpreted cautiously and it has to be
confirmed using complementary techniques
that have a better spatial resolution, as for
example fMRI (see Chapter 29, in this
volume).

In this regard, a promising future for EEG
is to combine its information with other
functional techniques (such as fMRI, PET or
TMS) and the application of new algorithms
and techniques in order to extract more
information from the raw data. However,

the crucial point will be the creation of
new research paradigms that allow studying
psychological functions in today still emerg-
ing fields of cognitive neuroscience. Hence
there is a need of new paradigms that allow
the application of electroencephalographic
techniques to social and developmental psy-
chology, as well as to single-trial experiments.
Only the combination of smarter paradigms
and powerful techniques of analysis will allow
us to face the new challenges of psychology
and cognitive neuroscience.

NOTE

High resolution color figures of this chapter
can be found at www.brainvitge.org/HQMP

NOTES

1 The study of phase has become increasingly
relevant due to the controversy over the origin
of evoked potentials. The classical (evoked) theory
supports that the ERP arises from a fixed latency
fixed polarity response that appears in the EEG
(acting as noise) de novo. As an alternative, it has
been proposed that the ERPs appear due to a
reorganization in the phase of the EEG background
signal, that is consequently not regarded as noise but
as containing relevant information that might affect
the EEG response (oscillatory model). Some studies
using real data have suggested that both processes
might contribute to the ERP (Fuentemilla et al., 2006),
making the study of phase important in EEG analysis.
However, Yeung et al. (2004) proposed that current
methods cannot dis-ambiguate the question about
the origin of the ERPs. These authors argued that
finding an increase of the inter-trial phase coherence
in parallel to the appearance of an ERP (power
increase) does not fully support the oscillatory model,
because this effect could also be explained by the
presence of a fixed latency and polarity response as
proposed by the classical model.
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