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Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance
imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent
speech, the possible contribution of different brain networks during this type of learning is still largely unknown.
Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a
complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the
different brain networks subserving word learning from an artificial language speech stream. Results were
replicated in a second cohort of participants with a different linguistic background. Four spatially independent
networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal
Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network.
The level of engagement of these networks varied through the learning period with only the dorsal Auditory-
Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the
second block of the learning phase correlated with the individual variability in word learning performance.
These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and
ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly
correlated with word learning performance.

© 2015 Elsevier Inc. All rights reserved.
Despite the apparent ease with which humans speak and communi-
cate, learning a new language is a complex task that everyone needs to
face at least once in her or his lifetime. A central aspect of this process is
the acquisition of newwords. In natural circumstances, learners need to
first discover word units from fluent speech. This process may rely
on statistic-based mechanisms which track regularities between
phonemes and syllables, as well as on the detection of the subtle
prosodic cues that can helpword segmentation (e. g. pauses, intonation,
etc.; Aslin et al., 1998; Peña et al., 2002). Then, memory traces of those
isolated word forms need to be progressively enhanced through
of Psychology, Department
Spain.
lly to the present study.
subsequent encounters (Saffran, 2001) in order to be memorized and
stored in long-term memory (for a review: Rodriguez-Fornells et al.,
2009).

Therefore, as shown for other complex cognitive functions, new
word learning may rely on widespread segregated and overlapping
large-scale networks (Mesulam, 1990), even beforemeaning is attached
to them. Interestingly, we have recently shown that the ability to learn
novel word forms is related to functional and structural connectivity
between the auditory cortical area (comprising the superior temporal
gyrus, STG) and the motor regions (comprising the premotor cortex,
PMC; and the inferior frontal gyrus, IFG) through the direct connection
of the arcuate fasciculus in the left hemisphere (López-Barroso et al.,
2013). These regions belong to the dorsal stream of language process-
ing, which is in charge of mapping sound into articulation (Hickok and
Poeppel, 2000; Hickok et al., 2011; Rauschecker and Scott, 2009; Saur
et al., 2008), a process that might be involved in the acquisition of
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Fig. 1. Schematic illustration of the artificial language streamused in the learning phase of the experiments. The streamwas aurally presented and it was composed of nonsense trisyllabic
words that were repeated across the stream. The “_” represent the 25 millisecond pause inserted between the words in order to mark word boundaries.
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new vocabulary (Hickok and Poeppel, 2007; Rodriguez-Fornells et al.,
2009). At the same time, the areas of the dorsal stream along with the
inferior parietal lobe (Buchsbaum and D'Esposito, 2008; Corbetta
and Shulman, 2002) are related to the rehearsal and attentional mech-
anisms necessary to maintain phonological information in working
memory (Jacquemot and Scott, 2006); a function that is likely to be re-
quired to keep the phonological form of the segmented word in an ac-
tive state in order to be memorized.

Thus far, previous reports of functional neuroimaging of the very
first stages of word learning are limited (Cunillera et al., 2009; Karuza
et al., 2013;McNealy et al., 2006, 2011). In spite of somemethodological
differences, all of these studies required participants to listen to a
continuous flow of speech composed of nonsense trisyllabic words
with no meaning attached. McNealy et al. (2006) identified increased
activity in the left inferior and middle frontal gyrus when comparing
words (presented during the learning phase) with partwords as the
neural signature of on-line word learning. In addition, during learning,
temporal and parietal regions showed increased activity when listening
to a stream containingwords compared to a stream containing syllables
in random order. Cunillera et al. (2009) also reported the involvement
of the PMC during the initial stages of the learning process. Finally, a
recent study reported a correlation between IFG activation and segmen-
tation abilities (Karuza et al., 2013). Although the univariate analysis
approach taken by these studies allows only spotting the involvement
of a variety of independent regions, the regions highlighted suggest an
involvement of the dorsal stream in word learning. However, to date
there is no information about how these segregated regions functionally
interact during word learning.

Here we used independent component analysis (ICA) to identify
the whole set of functional networks engaged during a word-
learning task, when no meaning is attached to the new words. ICA
is a data-driven approach (Calhoun et al., 2008) that allows the mea-
surement of both the BOLD response fluctuations in the active and
the spontaneous fluctuations in the resting brain (Smith et al.,
2009). It captures the integrated activity of spatially distributed
brain regions (i.e. functional integration; Friston, 2011; Smith,
2012) without any a priori constraint. ICA is especially well-suited
to discern how multiple functional networks — subserving different
cognitive processes — synergistically interact (Calhoun et al., 2001;
Celone et al., 2006; Wu et al., 2009). ICA presents some advantages
over univariate analysis, as for example, it does not need a temporal
model of brain functioning. Univariate analysis provides optimal re-
sults when the activated areas follow an almost canonical BOLD re-
sponse, but in contrast, is blind to other types of changes (for
example transient task-related, non-task related, slow varying
changes, etc., Calhoun et al., 2009; McKeown et al., 1998).
Moreover, recent studies have shown that different neural circuits
can occur concurrently within the same brain areas, but cannot be
resolved by standard GLM analysis (Beldzik et al., 2013; Xu et al.,
2013a,b).

In this study, participants completed an artificial word-learning
task which tapped the initial stages of word learning, when auditory
word forms need to be learned from fluent speech and no meaning is
yet associated to them (De Diego-Balaguer et al., 2007; Peña et al.,
2002). First, we aimed to define the brain networks that were en-
gaged and disengaged during the word-learning task. As the ICA
analysis is fully data-driven, similar experiments were performed
in two different cohorts of participants with different linguistic back-
grounds (Spanish [n = 25] and German [n= 16]), searching for rep-
lication (Bennet et al., 2009; Button et al., 2013; Lieberman and
Cunningham, 2009). Second, we aimed to study which of the en-
gaged networks was associated with the individual variability in
the word learning performance.

Material and methods

Participants

Forty-three participants were recruited for the study. Twenty-
seven native Spanish speakers (mean age: 24.7, SD: 4.6, 12
women) were involved in the main cohort, while the replication co-
hort involved sixteen German speakers (mean age, 26.6; SD: 4.6, 8
women). Written consent was obtained from all subjects and they
were paid for their participation. They all were free of neurological
and otological diseases. Experiments were approved by the respec-
tive local ethical committees.

Artificial word-learning task

Main cohort
The experiment involved a learning and a test phase. During the learn-

ing phase, subjects conducted an artificial word-learning task (Fig. 1)
administered in two runs. Eight different artificial languages were used,
including six that had been employed in a previous study (De Diego-
Balaguer et al., 2007) and two new languages that were validated in a be-
havioral pilot study. Stimuli were presented through MR-compatible
headphones. Each participant heard two of the eight languages created,
one in each run. The order of the languages was counterbalanced
among subjects. Streams and test itemswere built usingMBROLA speech
synthesizer software (Dutoit et al., 1996). The languages were built
by concatenating nine different trisyllabic nonsense words (De
Diego-Balaguer et al., 2007; Peña et al., 2002; Saffran et al., 1996) that
followed Spanish phonotactic constraints. Words had a duration of
696 ms each, and subtle pauses of 25 ms were inserted between them
in order to introduce a prosodic cue to enhance the segmentation process
(Fig. 1). During the task, 4 active blocks, each including 42-word presen-
tations (30 s), were alternatedwith resting blocks of 20 s duration.Words
were presented in the form of a fluent speech stream and concatenated
pseudo-randomly such that the same word was never immediately re-
peated in the stream. Participants were told to pay attention to the non-
sense language stream, as later on they would be asked about the
“words” presented within the streams.

After the language exposure in each run, word learning was assessed
behaviorally by testing words that had been presented during the
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learning phase and words that had not been presented (“non-words”).
Non-words were built with the same syllables as the words presented
in the learning phase, but in an incorrect order. Responses were
recorded using an MR-compatible response box containing two
response buttons (forefinger and middle-finger of the left hand). Partici-
pants heard aword or non-word presented in isolation and theywere re-
quired to presswith themiddle finger button if they thought the stimulus
was a word of the learned language and with the index finger if they
thought that it was a non-word. The experiment was presented using
the Presentation Software. In order to assess participants' ability to cor-
rectly discriminate words from non-words, their behavioral responses
were transformed into d-prime scores (MacMillan and Creelman, 2005).
The subjects' overall performance indicated that words of the languages
were indeed learned (behavioral data for two subjects was not available
due to technical problems in the recording): participants reliably distin-
guished between words and non-words (t(24) = 2.74, p b 0.01).
Second cohort
For the second cohort, given that participants were native German

speakers, the materials were modified to use German phonemes.
This was done by applying the German diphone database from the
MBROLA text-to-speech synthesizer. Speech streams preservedGerman
phonotactics. The same procedure as for the main cohort was used for
the learning and test phases except that, in order to have a greater
signal-to-noise relation, 3 runs with 6 language-rest blocks per run
were used. The duration of each active and resting block was the same
as for the main cohort. Although responses could not be recorded in
this scanner, to maintain the same procedure as in the main cohort,
participants were required to respond during the test phase in the
same manner as the participants from the first cohort. The materials
used were tested in another group of participants (N = 13) and
confirmed that learning was also possible with the modified version of
the material (t(12) = 4.27, p b 0.001).
Image acquisition

Main cohort
Images were acquired using a 3.0 T Siemens Trio MRI system at the

Hospital Clinic of Barcelona. Functional images were obtained using a
single-shot T2*-weighted gradient-echo EPI sequence (slice
thickness = 4 mm; no gap; number of slices = 32, order of acquisition
interleaved; repetition time (TR) = 2000 ms; echo time (TE) = 29ms;
flip angle = 80°; matrix = 128 x 128; field of view FOV = 240 mm;
voxel size = 1.87 × 1.87 × 4 mm3). Each slice was aligned to the
plane intersecting the anterior and posterior commissures. In addition
to the functional runs a high-resolution T1-weighted image (slice
thickness = 1 mm; no gap; number of slices = 240; repetition time
(TR) = 2300 ms; echo time (TE) = 3 ms; matrix = 256 x 256; field of
view (FOV) = 244 mm) was also acquired for each subject.
Replication cohort
Imageswere acquired using a 3.0 T Siemens AllegraMRI system at In-

ternational Neuroscience Institute in Hannover, Germany. Functional im-
ages were obtained using a single-shot T2*-weighted gradient-echo EPI
sequence [slice thickness = 3 mm; distance factor = 25% (0,7 mm);
number of slices = 34, order of acquisition interleaved; repetition time
(TR) = 2000 ms; echo time (TE) = 30 ms; flip angle = 80°; matrix =
128 x 128; FOV = 192 mm; voxel size = 3x3x3 mm3]. Each slice was
aligned to the plane intersecting the anterior and posterior commissures.
In addition to the functional runs a high-resolution T1-weighted image
[slice thickness = 1 mm; no gap; number of slices = 192; repetition
time (TR) = 15 ms; echo time (TE) = 4.9 ms; matrix = 256 x 256;
FOV = 256 mm] was also acquired for each subject.
Preprocessing and ICA analysis

In both cohorts, the ICA analysis was performed on the fMRI data ac-
quired during the learning phase. Data were preprocessed using Statis-
tical Parameter Mapping software (SPM8, Wellcome Department of
Imaging Neuroscience, University College, London, UK, www.fil.ion.ucl.
ac.uk/spm/). For themain cohort, the two functional runswere realigned
and their mean image was calculated. The structural T1s were co-
registered to their respective mean functional image and segmented
using the New Segment toolbox included in SPM8. Following segmenta-
tion, gray and white matter images were fed to DARTEL (Ashburner,
2007) in order to achieve normalization. After normalization, data was
subsampled to 1.5x1.5x1.5 mm3 (121x145x121 voxels) and spatially
smoothedwith an 8x8x8 full width at half maximum (FWHM) Gaussian
kernel. For the replication cohort, the three functional runs were also
realigned and a mean image of all the EPIs was created. After an initial
12-parameter affine transformation of this mean to the EPI MNI tem-
plate, the resulting normalization parameters derived were applied to
the whole functional set. Finally, functional EPI volumes were re-
sampled into 4x4x4 mm voxels and spatially smoothed with an 8 mm
FWHM kernel.

Group Spatial ICAwas used to extract the different networks present
during each of the experiments using the GIFT software (http://icatb.
sourceforge.net/). ICA was applied with the number of independent
components set to 20, which has been shown to be an optimal dimen-
sion in previous studies (Forn et al., 2013; Smith et al., 2009). Following
this, the functional images fromeach of the cohortswere analyzed using
group ICA, which startedwith an intensity normalization step. After this
first step, data was first concatenated and then reduced to 20 temporal
dimensions (using principal component analysis), to be then analyzed
with the infomax algorithm (Bell and Sejnowski, 1995). No scaling
was used, as with the intensity normalization step, the intensities of
the spatial maps obtained are already in percentage of signal change.

A one-sample t-test was calculated using the individual spatial
maps, which treats each subject's network as a random effect (Calhoun
et al., 2001). All networks (see Fig. 2) are shown at p b 0.01 corrected
threshold using the false discovery rate (FDR) algorithm with a cluster
extent of 30 voxels. FDR correction has been widely used to report ICA
components (Calhoun et al., 2001, 2008; Eichele et al., 2008; Forn
et al., 2013; Wu et al., 2009).

Calculation of task-related networks

In order to identify which of the networks retrieved were related to
the task (i. e., word learning from fluent speech), a multiple regression
was calculated using GIFT. This allows fitting each subject's component
time course to themodel. Models were created using SPM8 by convolv-
ing a canonical hemodynamic response with the timing of the active
and resting blocks of the learning phase. First, all networkswere visually
inspected in order to detect artifactual components reflecting move-
ments, ventricles, edges or thepresence of blood vessels. Eight networks
from themain cohort and 6 from the replication cohort were discarded.
Then, for the remaining networks (12 for the first and 14 for the second
cohort), a model including only two conditions was created: learning
from fluent speech (active blocks) and rest. For each of the remaining
networks, a one-sample t-test was performed on all the beta values ob-
tained from the learning condition regressor. A networkwas considered
task-related if the regressor survived the fit (p b 0.05, uncorrected for
multiple comparisons; Calhoun et al., 2008; Forn et al., 2013; see Fig. 2
and Tables 3 and 4). The analysis of the task-relatedness of the networks
extracted for the second cohort was done specifically to replicate the
results obtained in the main cohort. Independent replication is crucial
to differentiate true effects from random noise and to firmly establish
a result (Bennet et al., 2009; Button et al., 2013). It also minimizes
Type I errors, as false positives are not likely to replicate across different
studies (Lieberman and Cunningham, 2009). At the same time it allows
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avoiding committing Type II errors that may rise from a too restrictive
Bonferroni correction. Replicating the same networks in two different
cohorts of individuals with different language backgrounds, with MRI
data being collected in different scanners, and also using two different
sets of stimuli (one following the phonotactic rules of Spanish and the
other of German) proves that the reported networks do not come
from spurious correlations. In agreement with this, here we focused
our discussion on the networks that were significantly engaged during
both the main and the replication cohorts. In addition, and in order to
provide the reader with all the information, we indicate which of
these networks survived the correction for multiple comparisons.
Note that our strongest claims are therefore limited to these networks.
Tables 1, 2 and 4 show which of the task-related networks survived a
Bonferroni correction for multiple comparisons: p-values under
0.0041 for the first cohort (12 networks were tested), under 0.0035
for the second (14 networks tested).

Relationship between network engagement and learning performance

Once the networks significantly engaged duringword learningwere
established, a second fine-grained task-related analysis was performed.
The aim was to relate each task-related network with learning perfor-
mance over time. For this, we calculated a newmodel defining 5 condi-
tions: learning during block 1, 2, 3 and 4, and rest. This analysis was only
performed for the main cohort, as behavioral responses inside the
scanner were not available for the replication cohort. Therefore, an
independent beta value for each of the four blocks comprising the task
(two repetitions per condition in each of the two runs) was extracted
for the 5 task-related networks replicated in both cohorts. Once again,
a one-sample t-test was carried out on all the beta values for the active
task regressor of each block (p b 0.05, uncorrected for multiple compar-
isons). The networks surviving the correction for multiple comparisons
are indicated in Table 5 (p-values under 0.0025, as four blocks were
tested for 5 networks). As no replication here was possible, only the
networks surviving multiple comparisons correction were further ana-
lyzed. Therefore, correlations were calculated between word learning
performance (d prime) and each participant's beta value only for
those blocks and networks. In addition, correlations were performed
using the Robust Correlation Toolbox (Pernet et al., 2013) to compute
Pearson skipped correlations (Rousseeuw and Van Driessen, 1999;
Rousseeuw, 1984; Verboten andHubert, 2005) which involvemultivar-
iate outlier detection and can provide a more robust measure of
correlation (Rousselet and Pernet, 2012). In this last analysis, which
was done to confirm a direct relationship with learning performance,
no correction for multiple comparisons was applied (6 correlations
were calculated: first block, dAPMN and dSMN; second block, dAPMN;
third block, dAPMN; fourth block, dAPMN and dSMN; see Results
section).

Results

ICA decomposition

Main cohort
Three out of the remaining 12 ICA networks (after removal of those

corresponding to artifacts) were significantly positively correlated to
the word-learning task (see Table 1 for statistical values) with a fourth
one being marginally related (p = 0.052). These same three networks
Fig. 2. Task-related networks and associated hemodynamic time courses for themain cohort (le
dorsal networks: dorsal Auditory-Premotor (A); dorsal Sensory-Motor (B); and dorsal Fronto-Pari
component is rendered onto theMNI template at representative slices, withMNI coordinates in
30 voxels with a 1% false discovery rate with the threshold bar shown at the right side of each
shown. The mean time course over the 27 subjects (main cohort) and the 16 subjects (replica
with black lines. Only left hemisphere is shown in the sagittal views.
were also retrieved as task-related in the replication cohort (see
below). From those, only two out of three networks survived the correc-
tion for multiple comparisons (dorsal Auditory-Premotor Network and
dorsal Sensory-Motor Network; Table 1). The task-related ICA maps
(networks) are displayed in Fig. 2 (left panels) along with their respec-
tive BOLD time courses. Three of these networks were considered
“dorsal” networks (Table 1): a dorsal Auditory-Premotor Network
(dAPMN, Fig. 2A) covering the bilateral superior temporal gyrus (STG)
and superior temporal sulcus (STS) extending to the dorsal part of the
middle temporal gyrus (MTG), the Sylvian Parietal Temporal area
(SPT), the premotor cortex (PMC), the supplementary motor area
(SMA) and pre-SMA; a dorsal Sensory-Motor Network (dSMN, Fig. 2B)
comprising the pre- and post-central gyri, PMC and SMA; and a left
lateralized dorsal Fronto-Parietal Network (dFPN, Fig. 2C) covering
mainly frontal (including the inferior [IFG] and middle [MFG] frontal
gyrus) and parietal (both inferior and superior) areas. The fourth
network, marginally related to the task, was identified as a ventral
Fronto-Temporal Network (vFTN, Fig. 2D), covering the prefrontal and
insular cortex, the anterior superior and middle temporal cortex and
the caudate nucleus. Finally, the Default Mode Network (DMN, Fig. 3A)
was the only network significantly negatively correlated with the task.
The DMN comprised its typical constituents, i.e. bilateral parietal and
occipital gyri, the precuneus, posterior and middle cingulate gyri, the
superior middle frontal and the anterior cingulate gyri.

The remaining 7 networks that did not pass the threshold to be
considered related to the task (p b 0.05) were labeled as: Superior
Parietal, Lateral Visual, Cerebellar, Medial Visual, Cingulate, Mesial
Temporal and right Fronto-Parietal (see Table 3). All of these networks
have been previously identified and reported both during active task
and resting state paradigms (Forn et al., 2013; Smith et al., 2009; Tie
et al., 2008).
Replication cohort
Six out of the 14 ICA remainingnetworks (after removal of those cor-

responding to artifacts) were significantly positively correlated to the
word-learning task (see Table 2 for statistical values). The three
task-related networks identified in the main cohort (dAPMN, dSMN,
dFPN)were among those six networks. In addition, it is worthmention-
ing that the fourth network, the vFTN, passed the significance threshold
(p b 0.045, see Table 2 and Fig. 2D, right panel) while in themain cohort
this network resulted marginally related (p = 0.052). Importantly, the
areas belonging to these networks were highly consistent compared
with the ones belonging to the networks from the main cohort (see
Fig. 2, left panel). As in the main cohort, the engagement of the
dAPMN and dSMN survived multiple comparison correction. The two
other networks that correlated with the model were an Insular Network
comprising the insula bilaterally and the SMA; and a Lateral Visual
Network covering the lateral aspects of bilateral superior, middle and
inferior occipital and fusiform gyri (Table 2). The latter network was
retrieved also in the main cohort. However, it was not significantly or
marginally related to the task (see Table 3 for statistical values). Again,
the DMN was the only network significantly negatively correlated
with the task (see Fig. 3B). The remaining 7 networks that did not
pass the threshold to be considered related to the task (p b 0.05) were
very similar to those that did not reach the threshold either in the
main cohort. These networks have also been previously reported both
in task-related and resting state ICA studies (Forn et al., 2013; Smith
et al., 2009; Tie et al., 2008) and were labelled as Medial Visual, Medial
ft panel) and the replication cohort (right panel). Three of the networks were identified as
etal (C). The fourth network was identified as a ventral Fronto-Temporal network (D). Each
millimeters shown in the top left corners. Components are shownwith a cluster extent of
panel. On the lower part of each panel, the associated time course for each component is
tion cohort) is shown in a central, colored line with standard error of the mean depicted
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Fig. 3. The default mode network, which resulted anticorrelatedwith the task in themain (A) and the replication (B) cohorts, is rendered onto theMNI template at representative coronal,
sagittal and axial slices with MNI coordinates in millimeters shown in the top left corners. The average time course over the 27 subjects in the main cohort and over the 16 subjects in
replication cohort (blue line), and the standard error of the mean (black lines) are shown. The components are shown with a cluster extent of 30 voxels with a 1% false discovery rate
with the threshold bar shown at the right of the panel. L: left; R: right.

Table 2
Different task-related ICA networks with their respective areas of activation and their statistical level of task relatedness from the replication cohort (n= 16). TRN: task-related network;
BA: Brodmann areas; dAPMN: dorsal auditory-premotor network; dSMN: dorsal sensory-motor network; dFPN: dorsal fronto-parietal network; vFTN: ventral fronto-temporal network;
DMN: default mode network; VLN: visual lateral network; IN: insular network.

TRN Activation region BA Task relatedness
T-val (p-val)

dAPMN
Fig. 2A

Bilateral sup/mid temporal gyri; bilateral heschl gyri; bilateral insula; left precentral gyrus; left postcentral
gyrus.

22,21,13,41,42 6,4 18.00 (0.001)a

dSMN
Fig. 2B

Bilateral precentral gyri; bilateral postcentral gyri; supplementary motor area; pre-supplementary motor
area; bilateral middle cingulate gyri; bilateral thalamus; bilateral caudate.

4,3,6,2,24 4.73 (0.001)a

dFPN
Fig. 2C

Left inf/mid temporal gyrus; bilateral angular gyri; left supramarginal gyrus; bilateral superior occipital gyri; left
inf/mid occipital gyrus; bilateral inf/sup parietal gyri; left precuneus; left inferior frontal gyrus orb/trian/oper;
bilateral middle frontal gyri; left superior frontal gyrus; supplementary motor area; left precentral gyri; left
hippocampus.

44,45,46,47,21,22,20,1937,39,40,7,8,9
10,11,6

3.30 (0.004)

vFTN
Fig. 2D

Bilateral insula; bilateral temporal pole; bilateral inf. frontal gyri pars trian/oper/orb; supplementary motor
area; bilateral frontal superior medial gyri; bilateral caudate head; bilateral globus pallidum; bilateral
middle/superior temporal gyri; bilateral supramarginal gyri; bilateral angular gyri.

47,45,44,38 22,21,13,40,89 2.19 (0.045)

DMN
Fig. 3B

Bilateral cuneus; bilateral precuneus; bilateral superior/middle occipital gyrus; bilateral anterior/posterior/middle
cingulate gyrus; bilateral angular gyrus; bilateral sup/infr parietal gyrus; right middle temporal.

7,31,23,32,4019,39 −3.13 (0.007)

VLN
Fig. S1A

Bilateral mid./sup./inf. occipital gyri; bilateral sup/inf. parietal gyri; bilateral fusiform gyri; bilateral mid/inf
temporal; bilateral postcentral gyri; bilateral cuneus; bilateral lingual gyrus; bilateral middle frontal

19,18,7,37,40 10 2.31 (0.035)

IN
Fig. S1B

Bilateral insula; bilateral precentral gyri; bilateral postcentral gyri; supplementary motor area; cuneus. 6,31,13 3.95 (0.0015)a

a Survived the correction for multiple comparisons.

Table 1
Different task-related ICA networks with their respective areas of activation and their statistical level of task relatedness for the main cohort of participants (n = 27). TRN: task-related
network; BA: Brodmann areas; dAPMN: dorsal auditory-premotor network; dSMN: dorsal sensory-motor network; dFPN: dorsal fronto-parietal network; vFTN: ventral fronto-temporal
network; DMN: default mode network. * Survived the correction for multiple comparisons.

TRN Activation region BA Task relatedness
T-val (p-val)

dAPMN
Fig. 2A

Bilateral sup/mid temporal gyrus; bilateral heschl gyrus; bilateral insula; bilateral precentral gyrus; left postcentral
gyrus; supplementary motor area; pre-supplementary motor area

22, 21, 13, 41, 42, 6, 4 15.20 (0.001)*

dSMN
Fig. 2B

Bilateral precentral gyrus; bilateral postcentral gyrus; supplementary motor area; pre-supplementary motor area;
bilateral middle cingulate gyrus

4, 3, 6, 2, 24 3.77 (0.001)*

dFPN
Fig. 2C

Left sup/inf temporal gyrus; bilateral middle temporal gyrus; bilateral angular gyrus; left supramarginal gyrus;
bilateral superior occipital gyrus; left inf/mid occipital gyrus; bilateral inf/sup parietal gyrus; left precuneus; bilateral
inferior frontal gyrus orb/trian/oper; bilateral middle frontal gyrus; left superior frontal gyrus; supplementary motor
area; bilateral precentral gyrus

44, 45, 46, 47, 21, 22, 20, 19, 37, 39,
40, 7, 89, 10, 11, 6

2.12 (0.043)

vFTN
Fig. 2D

Bilateral insula; bilateral temporal pole; bilateral inf. frontal gyrus pars triang/oper/orb; bilateral anterior
cingulate gyrus; bilateral frontal superior medial gyrus; bilateral caudate head; left globus pallidum; bilateral
mid/sup temporal gyrus; bilateral supramarginal gyrus; bilateral angular gyrus; bilateral inferior parietal gyrus

47, 45, 44, 38, 22, 13, 40, 10, 9, 32 2.03 (0.052)

DMN
Fig. 3A

Bilateral cuneus; bilateral precuneus; bilateral middle occipital gyrus; bilateral inferior parietal gyrus; bilateral
angular gyrus; bilateral middle temporal; bilateral ant/post/mid cingulate gyrus; bilateral sup/mid frontal gyrus;

40, 39, 7, 22, 19, 31, 29, 5, 238, 9, 10,
11, 32

−2.58 (0.015)

187D. López-Barroso et al. / NeuroImage 110 (2015) 182–193



Table 3
Different non task-related networks with their respective areas of activation and their statistical level of task relatedness for the main cohort. NTRN: non-task-related network; BA:
Brodmann areas.

NTRN Activation region BA Task relatedness
T-val (p-value)

Sup. parietal Bilateral precuneus; bilateral sup/inf parietal gyrus; bilateral postcentral gyrus; bilateral middle occipital gyrus;
bilateral middle cingulum.

7, 40, 5, 31 −0.36 (0.71)

Visual lat. Bilateral sup/mid/inf occipital gyrus; bilateral fusiform gyrus; bilateral mid/inf temporal gyrus; bilateral lingual gyrus. 19, 18, 37, 7 1.03 (0.31)
Cerebellar Cerebellum; vermis; pons. - 0.87 (0.39)
Medial visual Bilateral calcarine; bilareal lingual gyrus; bilateral cuneus; bilateral middle/superior occipital gyrus; bilateral precuneus. 19, 18, 7, 31, 1730 −1.12 (0.27)
Cingulate Bilateral frontal medial gyrus pars orbitalis; bilateral frontal superior medial gyrus; bilateral anterior cingulate gyrus;

bilateral rectus; bilateral caudate.
10, 11, 32 −0.73 (0.47)

Mesial temp Bilateral temporal pole; bilateral parahipocampal gyrus; left middle temporal gyrus; bilateral hippocampus; bilateral
fusiform gyrus; bilateral amygdala.

38, 34, 21, 28 35, 20,
28

−0.01 (0.99)

Right fronto
parietal

Bilateral middle frontal gyrus; right superior frontal gyrus; right inferior frontal gyrus part orb/trian/oper; right
frontal medial gyrus pars orbitalis; right frontal superior medial gyrus; right precentral gyrus; right anterior cingulate
gyrus; bilateral middle cingulate gyrus; bilateral angular gyrus; bilateral superior/inferior parietal gyrus; bilateral
precuneus; right supramarginal gyrus; right mid/sup occipital gyrus.

10, 9, 8, 6, 46 11, 47,
45, 4 32, 23, 40, 7 39

1.20 (0.23)
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Inferior Visual (covering mainly the calcarine visual cortex), Cerebellar,
Mesial Temporal, right Fronto-Parietal, Posterior DMN and SuperiorMedial
Fronto-Parietal (see Table 4 for a description and statistical analysis).

Network engagements across blocks and word learning performance

First Block: the dAPMN, the dSMN, the dFPN and the vFPN were
active during the first block, while the DMN was deactivated (Table 5
and Fig. 4). Second block: only the dAPMN remained significantly active,
while the DMN was again significantly disengaged (Table 5 and Fig. 4).
Third block: only the dAPMNwas active during the third block (Table 5
and Fig. 4). Fourth block: the dAPMN and the dSMN were active during
the last block (Table 5 and Fig. 4). The dAPMN engagement survived
Bonferroni correction in all blocks and the dSMN in the first and fourth
blocks.

Pearson skipped correlation analyses revealed that the strength of
connectivity of the dAPMN during the second block was significantly
correlated with word learning performance (no bivariate outliers
detected: r = 0.40, p b 0.047; confidence intervals = 0.10, 0.65; see
Fig. 5). A positive trend was also found during the first block although
the p value did not reach the threshold for significance (no bivariate
outliers detected: r = 0.34, p = 0.08; confidence intervals = 0.06,
0.60; Fig. 5).

Discussion

In this study we identified several brain networks whose connectiv-
ity strength increases when adult participants are learning words from
fluent speech. While being exposed to a novel language, three dorsal
networks were engaged in two different and independent samples of
subjects, and a fourth ventral network was significant for one sample
Table 4
Different non-task related networks with their respective areas of activation and their statistica
Brodmann area.

NTRN Activation region

Med. inf. visual Bilateral calcarine; bilateral inf/mid occipital gyrus.
Cerebellar Cerebellum; vermis; pons
Medial visual Bilateral calcarine; bilareal lingual gyrus; bilateral cuneus; bilateral m

precuneus
Posterior DMN Bilateral frontal medial gyrus pars orbitalis; bilateral frontal superior

cingulate gyrus; bilateral rectus; bilateral caudate; bilateral precuneu
Mesial temporal Bilateral temporal pole; bilateral parahipocampal gyrus; bilateral mid

hippocampus; bilateral fusiform gyrus; bilateral amygdala.
Right fronto
parietal

Right mid/sup frontal gyrus; right inferior frontal gyrus part orb/trian/ope
bilateral angular gyrus; right supramarginal gyrus; bilateral sup/inf pariet

Superior medial
fronto-parietal

Bilateral frontal superior medial gyrus; bilateral superior middle/fron
gyrus; bilateral angular; left supramarginal gyrus; bilateral inferior p
and marginal for the other. Following previous language processing
models (Hickok and Poeppel, 2007; Rauschecker and Scott, 2009), the
three networks were classified as dorsal language related networks.
Specifically, an auditory-premotor network, a sensory-motor network
(dSMN) and a fronto-parietal network (dFPN; see Fig. 2A, B and
C) were identified. Thus, segregated sub-networks within the dorsal
stream might have contributed differentially to the word learning pro-
cess. Of these, the dAPMNwas significantly active during all four blocks,
while the dSMN was active during the first and last block (Fig. 4). The
fourth task-related network was part of the ventral stream of speech
processing (vFTN; see Fig. 2D). Expectedly, the default mode network
showed an opposite pattern, as it was negatively correlated with the
task. In addition, the block analysis engagement of the networks
through the learning phase showed that although this networkwas sig-
nificantly disengaged during the early presentation of the stimuli, it did
not showanegative correlation during the last two blocks (Fig. 4). Inter-
estingly, only the variability in the dAPMN directly correlated with the
differences in individual learning performance during the second
block of the task (and marginally during the first one; Fig. 5). These
results suggest that connectivity between motor and auditory areas is
important in the very early stages of learning when word forms are
extracted from fluent speech. Importantly our results were obtained
through Independent Component Analysis, a fully data-driven approach
without any a priori assumption. Although these networks have been
reported elsewhere during resting state (e.g. Beckmann et al., 2005;
Smith et al., 2009), here we report their specific contribution to word
learning.

The implication of the five reported networks in word learning was
supported by the fact that our resultswere replicated in a second cohort
of subjects. Consistent task-related networkswere observed across both
studies, in spite of different linguistic backgrounds (Spanish vs. German
l level of task relatedness for the replication cohort. NTRN: non-task-related network; BA:

BA Task relatedness
T-val (p-val)

18,17 −0.38 (0.70)
- −1.93 (0.07)

id/sup occipital gyrus; bilateral 19,18,7,31,1730 −1.47 (0.16)

medial gyrus; bilateral anterior
s; bilateral posterior cingulate gyrus.

10,11,32,31 0.10 (0.92)

/inf temporal gyrus; bilateral 38,34,21,28 35,20,28 1.78 (0.095)

rc; right frontal superior medial gyrus;
al gyrus; right postcentral gyrus.

10,8,9,6,46,4547,11,40,7,39 −1.46 (0.16)

tal gyrus; bilateral anterior cingulate
arietal gyrus

10,8,9,6,40,39 −1.05 (0.30)



Table 5
Statistical indexes of task relatedness for each of the four blocks that composed the word
learning task. TRN: task-related network; dAPMN: dorsal auditory-premotor network;
dSMN: dorsal sensory-motor network; dFPN: dorsal fronto-parietal network; vFTN: ven-
tral fronto-temporal network; DMN: default mode network.

Block TRN T-value d.f. T-value

1 dAPMN 17.6 26 0.001a

dSMN 4.74 26 0.001a

dFPN 2.67 26 0.015
vFPN 2.13 26 0.043
DMN −2.85 26 0.009

2 dAPMN 13.43 26 0.001a

dSMN 0.29 26 0.77
dFPN 1.57 26 0.12
vFPN 0.36 26 0.72
DMN −2.79 26 0.01

3 dAPMN 18.26 26 0.001a

dSMN 0.93 26 0.36
dFPN 1.12 26 0.27
vFPN −0.53 26 0.60
DMN −1.69 26 0.10

4 dAPMN 15.55 26 0.001a

dSMN 4.4 26 0.001a

dFPN 0.84 26 0.40
vFPN −0.03 26 0.97
DMN −1.44 26 0.16

a Survived the correction for multiple comparisons.
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learners with Spanish and German phonemes respectively), variable
MRI technology (two different 3 T scanners) and acquisition parameters
(see Material and Methods section). This further backs our claim, as
false positives are not likely to replicate across independent samples
(Bennet et al., 2009; Button et al., 2013; Lieberman and Cunningham,
2009).

Dorsal networks for word learning

We found three networks that belong to the dorsal fronto-temporo-
parietal streamof language processing (Hickok and Poeppel, 2000; Saur
et al., 2008). First, the dorsal Auditory-Premotor Network (Fig. 2A),
connecting the pSTG (including the Spt region, located within the
Sylvian fissure at the parieto-temporal boundary), the PMC and the
bilateral SMA, has been associated with auditory-motor integration
(Hickok and Poeppel, 2000; Liberman and Whalen, 2000), an inherent
mechanism of language processing. Interestingly, in our study this was
the only network that (i) was significantly engaged during the four
blocks; (ii) that showed the most robust engagement, as it did survive
multiple comparisons corrections in the different analyses; and (iii)
whose connectivity strengthwas directly correlatedwithword learning
performance, marginally during the first and significantly during the
second block of the learning phase. These two properties fit well with
a recent study in which we reported the importance of the direct left
segment of the arcuate fasciculus for word learning and the functional
connectivity between the areas connected by this fascicle (López-
Barroso et al., 2013). In this previous study nevertheless, the analyses
were restricted to the areas of theoretical interest and therefore whole
brain connectivity was not assessed. The consistent finding in this
different studywith an additional replication in a cohort froma different
language background and with a data-driven approach gives further
strength to the results.

The importance of motor regions for language processes is also sup-
ported by the implication of the PMC in speech perception (Meister
et al., 2007; Pulvermüller et al., 2006; Wilson and Iacoboni, 2006).
Also, Rauschecker and Scott (2009) proposed a unified function of the
dorsal stream in which the PMC informs the auditory system about
the planned motor sequences that are about to happen (overtly or
covertly), and this is matched with feedback signals from auditory
areas (pSTG), closing the loop. The template-matching function of this
network can therefore have a particularly important role during word
learning from speech (Rodriguez-Fornells et al., 2009). Our results
suggest that this function is particularly important during the initial
contact with the new language, when word forms need first to be
extracted, to be then kept in working memory and finally memorized.

Second, sensory and motor regions were also engaged during the
task, as supported by the identification of the dorsal Sensory-Motor
Network (dSMN, Fig. 2B). Primary related to motor functions (Biswal
et al., 1995), this bilateral network comprises regions from the
precentral and postcentral gyri in addition to supplementary and pre-
supplementary motor and cingulate areas. These regions have been
related to speech production (Alario et al., 2006; Chauvel et al., 1996;
Crosson et al., 2001; Krainik et al., 2004; Ziegler et al., 1997). Although
its exact role is still unclear, the anterior part of the SMA is reliably
involved in sequence learning (Hikosaka et al., 1996; Penhune and
Steele, 2012). This network was significantly engaged during the first
and the last blocks of learning, suggesting that the planning of the
articulatory movements (Lau et al., 2004) required for the covert
rehearsal (López-Barroso et al., 2011) occurs to a greater extent during
the early contact with the new language for the sequences of syllables
(first block) and then in the last block when word chunks are already
segmented and rehearsed for memorisation.

Third, a left dorsal Fronto-Parietal Network (dFPN, Fig. 2C) compris-
ing the inferior and superior parietal cortex, the IFG, the dorsolateral
prefrontal gyrus and the PMC was identified. This network can be
coonsidered a classical language network. Indeed, the inferior parietal
lobehas been previously identified as an important region in vocabulary
learning and second-language learning (Golestani and Pallier, 2007; Leh
et al., 2007;Mechelli et al., 2004). This whole network overlapswith the
attentional network (Corbetta and Shulman, 2002; Salmi et al., 2009)
and includes the supramarginal gyrus (SMG), involved also in themain-
tenance of phonological information inworkingmemory through an at-
tentional controller mechanism or through short-term storage (Awh
et al., 1996; Chein et al., 2003; Cowan, 2008; Ravizza et al., 2004). The
appearance of this network suggests an engagement of both working
memory and attention functions in learning of phonological word
forms (Baddeley, 2003; De Diego-Balaguer and Lopez-Barroso, 2010;
López-Barroso et al., 2011; Rodriguez-Fornells et al., 2009).
Ventral network for word learning

The ICA analysis also revealed a ventral Fronto-Temporal network
(Fig. 2D), which comprises the bilateral anterior temporal areas, the
IFG area (including the frontal operculum [FOP]) as well as the bilateral
striatum. Although classically associated to conceptual-semantic analy-
sis (Binder et al., 2009; Hickok and Poeppel, 2007; Lambon Ralph et al.,
2012; Patterson et al., 2007), the implication of the ventral network in
auditory object recognition has been also proposed, allowing categori-
zation of the incoming auditory stimulation as new or familiar (Leaver
and Rauschecker, 2010; Rauschecker and Scott, 2009; Zatorre et al.,
2004). In agreement with this, and regarding the task used in the
current study, the ventral stream could have a role in the recognition
of the phonological chunks (newwords) once they have been segment-
ed. Its engagement during word form learning, even when there is no
semantic component, agrees with previous results indicating a promi-
nent role of this ventral stream when support to the dorsal stream is
needed (López-Barroso et al., 2011; Saur et al., 2010). In addition, the
caudate nucleus forms part of this network, which agrees with the
importance of this area for the concatenation of sequences forming a
chunk (Koechlin and Jubault, 2006) in artificial language learning
from visual or auditory sequences (Bahlmann et al., 2008; De
Diego-Balaguer et al., 2008; Doeller et al., 2006; Lieberman, 2000).
Nevertheless, the limited replication of this network, marginally
significant in themain cohort,may go in thedirection of a secondary im-
plication of this network compared to the dorsal networks previously
described.
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Interestingly, the four networks identified in the study seem to be
organized in a caudal-dorsal to rostral-ventral fashion (see Fig. 6). This
organization fits well with studies proposing a hierarchical functional
organization of the lateral frontal cortex in relation to cognitive control.
Applied to sequential linguistic processing (e.g. phonemes, syllables,
Fig. 4. Illustration of the average network engagement for each block and network for themain
multiple comparisons.
words in sentences) this could mean that rostral (anterior) regions
control more abstract and complex structures and caudal (posterior)
regions process and control more concrete information (Badre and
D'Esposito, 2009; Bahlmann et al., 2012, 2014; Christoff et al., 2009;
Koechlin and Jubault, 2006).
cohort. Bars indicates SEM. *p b 0.05; **p b 0.01; ***p b 0.001; ▪ survived the correction for



Fig. 5. Scatter plots showing the relationship between network engagement and word learning performance in block 1 and block 2 for the dorsal auditory-premotor network. Correlation
indexes and the associated p values are depicted on each plot.
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The default mode network

The Default Mode Network (DMN); see Fig. 3) was negatively
correlated with the task. This finding is consistent with the characteris-
tics of the DMN. Since it was first described (Raichle et al., 2001), the
DMNhas been related to the gathering of incoming sensory information
at rest and has been reported as deactivated during active tasks
(Kuperberg et al., 2003; Mestres-Missé et al., 2008; Smith et al., 2009).
The block-wise analysis showed that the DMN was disengaged during
the first two blocks of stimulation. The concomitant correlation in
Fig. 6. Illustration of the frontal region covered by each of the four networks retrieved in the le
network are shown in this figure. MNI coordinates in millimeters are shown in the top left cor
these blocks with learning performance for the dAPMN may indicate
that as learning increases, the DMN gradually engages since the task
progressively becomes less demanding.

Finally, the present study has some limitations that should be faced
in future investigation. On the one hand, the correlation with behavior
allowed us to see the networks whose engagement had an effect on
the accuracy differences found among participants. However, other
networks showed variations in their engagement with the task and
although the non-significant correlation with performance indicates
that they might not determine differences in accuracy, it does not
ft hemisphere for the main cohort. For display purposes, only the frontal clusters of each
ners of each slice.
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mean that they are not involved in learning. Therefore, with this ap-
proach, we can spot and segregate the different networks involved in
the task but we are unable to know their specific contribution to lan-
guage learning. On the other hand, for this reason also, although we
had a strong hypothesis linking the Auditory-Premotor Network to
word learning performance, the fact that other networks were also en-
gaged during learning increased the number of correlations to be per-
formed. Thus, although the correlations were performed with a
specific robustness test and were limited to those networks surviving
multiple corrections and replication, the behavioral correlations report-
ed would have been sounder with a multiple comparison correction.
Finally, it is worth mentioning that in spite of the advantatges of using
ICA to unveil unconstrained brain connectivity compared to classical
GLM fMRI analysis, the interactions between networks are not revealed
with ICA analysis. Further studies are needed in order to assess the
direct influence and direction of the coupling that each network (or
nodes within these networks) exerts over the others (i.e., effective
connectivity) during language learning.
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