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Abstract — This letter reports a method to extract a functional network of the human brain
from electroencephalogram measurements. A network analysis was performed on the resultant
network and the statistics of the cluster coefficient, node degree, path length, and physical distance
of the links, were studied. Even given the low electrode count of the experimental data the
method was able to extract networks with network parameters that clearly depend on the type
of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral
networks underlying brain electrical activity, and links the fields of complex networks and cognitive

neuroscience.
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Introduction. — Functional magnetic resonance imag-
ing (fMRI) data for the human brain has been analyzed [1]
using a complex networks approach, and evidence was
found for a scale-free behavior of the derived functional
networks. The spacial resolution of fMRI is outstanding,
less than 1cm?®, but the temporal resolution is fundamen-
tally limited, because fMRI measures the metabolic activ-
ity of the brain, through the blood oxygen level difference.
Because the metabolic activity is a temporal convolution
of the computational activity, the temporal resolution is
at best on the order of a second. EEG signals on the
other hand, with a temporal resolution of less than a milli-
seconds, are a measure more directly related to the compu-
tational activity of the brain neural ensemble dendritic
currents, reflecting excitatory-inhibitory neural communi-
cation processes which are believed to reveal the effective
network of the brain [2]. Hence, EEG allows recording
real-time synchronous neural activity which closely link
neural computing and behavior [3]. However, while EEG
signals seem to be very rich in information, reliable extrac-
tion of information has been elusive [4]. A particular diffi-
culty for using EEG’s to study the functional network of
the brain is the fact that EEG signals are only measured
at the electrodes on the scalp. So that, until now, only
the network derived from the connectivity of the surface
electrode signals has been studied [5], which does not
reveal the network between the functional regions of the

brain. However, with recent advances in EEG tomogra-
phy [6] it is now possible to locate the source of the signals
within the brain, with course accuracy. This development
makes possible the construction of functional networks of
the brain with a much greater temporal resolution, by a
combination of EEG tomography and the methodology
employed in [1]. In this paper we describe such a “complex
networks” methodology for electrophysiology and apply it
to a relatively simple set of data obtained in an event-
related potential protocol with 13 subjects and collected
with 30 EEG channels. While it is certainly true that 30
electrodes are barely sufficient to obtain good tomographic
results, the aim here is to carry out a first test of the
approach. The technique can be applied with more exten-
sive data sets, and the envisioned applications are many.

Experimental procedure. — In this work we have
applied our analysis to a set of previously obtained and
well-studied data. It is a widely observed phenomena
in psychophysiology that when a novel (deviant) tone
appears in a background of similar (standard) stimuli,
the cerebrum elicits an electrical response that peaks
100-200 ms after the deviant stimulus, even if the subject
is not attending to the stimuli. This response can be
recorded, using EEG, as a negative voltage at the fron-
tocentral electrodes. This negative wave is known as
Mismatch Negativity (MMN). The paradigm used in
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collecting the data, described fully in [7,8], was designed
to study this process. The stimuli were auditory and
consisted of pure sine-wave tones (700 Hz), with a dura-
tion of either 75ms (standard) or 25 ms (deviant). Trains
of three tones at intervals of 300 ms were presented to
subjects. The first tone of each train was either standard
or deviant with equal probability, while the second and
third tones were always standard. The analysis performed
in this study utilized epochs of 400 ms of EEG data that
started 100 ms before the first tone. For each subject 100
standard and 100 deviant trials were analyzed.

Sixteen healthy subjects (mean age 39411 years)
participated in the study. Three subjects were excluded
from the rest of the study because they did not have an
identifiable mismatch negativity wave [9]. The subjects
were instructed to ignore auditory stimuli while they
performed an unrelated visual task. In what follows,
electrode voltage time series will be identified by ¢q(t;),
where the ¢ index refers to the electrode number, and ¢;
to the time of sampling events.

Computation of network from EEG data. — The
network is constructed from the EEG data in three
steps. First, Low-Resolution Tomography (LORETA) [6]
is employed to estimate the current densities within
the brain from the measured electrode voltages on the
scalp. LORETA is an L2 minimum normalization that
solves the inverse problem of EEG, that is it estimates
the current sources within the brain that produce the
measured EGG voltages at the scalp. Because the inverse
is not unique, this problem is not well defined. LORETA
finds the inverse that produces the source current density
with the smoothest spacial variation. In the past five
years, this tomographic approach has been used in several
neuroscience studies, e.g. [8,10-13]. The result of the
LORETA algorithm is a linear transformation (7},,) which
computes the estimated current densities (jn) at distinct
location (voxels) within the Talairach human brain [6]
from the electrode voltages (¢4):

Jn=> Tngdq
q

The “activation” of a voxel is defined to be the magnitude
of the (vector) current density,

L= 1Jall = 1) Tngall- (1)
q

For each time step of each trial, for each subject, the
electrode data is transformed into a voxel activation level
using LORETA, producing 2394 voxel activation time
series I, (t;) for each trial, for each subject.

The second step is the computation of the inter-voxel
correlation coefficient. The correlation coefficient ¢,
between voxels n and m for a single trial, is defined to
be the correlation coefficient of the activations over time:

Indm)t — (Ln)e(Im)t - (2)
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Fig. 1: The thresholding process is represented in this figure.
In (a) the magnitude of the correlation coefficient between
the voxel marked with a small square and other voxels is
represented by a grayscale. In (b) the regions connected to
the voxel are shown at three different thresholds. The white
region is the region connected at a large threshold, while the
light grey shows the region connected at a medium threshold,
and the dark grey is the region connected at a small threshold.

where (---); denotes a time average, o2 = (I2), — (I,,)?,
and S, (t;) =[I.(t;) — (In)t]/on is the demeaned and
normalized activation signal. The activation correlation
coefficient used here is defined to be the average of c,m,
over all 100 trials. The notation é,,,will be used for the
average activation correlation coefficient matrix.

The third step is to determine which voxels are linked.
When the absolute value of the correlation between voxels
n and m is greater than a chosen threshold r., the voxels
are linked, otherwise the voxels are not linked (as in [1]).
This process is represented in fig. 1. This defines the
connectivity matrix, with entries equal to 1 (voxels are
linked) or 0 (not linked),

3)

In the data set that is analyzed here, a network is
constructed for each subject for both deviant and standard
conditions and for six different threshold. This gives a total
of 156 networks.

- 1, if [€pm| > re and n #m,
™m0, otherwise.

Network analysis. — Once a network is defined by
the connectivity matrix, it is possible to study measures
associated with the network [1,14]. The following measures
are computed for the network. The notation (- - -) indicates
an average over the nodes or links of a single network.

— N, is the number of nodes with at least one link. This
measure deviates less than 1% from the maximum
(2394) for all networks studied.

— k,, is the degree of node n, the number of nodes linked
to node n:

(4)
(k) = % S ko = %Tr[AQ].
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— (), is the cluster coefficient for node n, the ratio of
the number of links between the neighbors of node n
and the maximum possible number of links between
the neighbors. With v, = {m|4,,» =1}, the set of
neighbors of node n, the cluster coeflicient can be
written as follows:

Dijevy Aij

Cn = kn(kn —1)

3
Ann

Fnln —1)° ©)

Note that the second form is equivalent because the
restricted sum of A;; is the same as the unrestricted
sum of A,;A;jAjn, since either A,; or Aj, is zero
for the added elements of the sum and both are
1 for the original elements of the sum. (C) is the
average cluster coefficient, an indicator of the fraction
of completed sub-networks. For an equivalent random
network (C) = (k)/(N —1).

— Ly is the path length between nodes n and m, the
minimum number of links required to travel through
the network from node n to node m. (L) is the average
path length, the average is computed over all pairs
of nodes that are linked by a path, unlinked pairs
are excluded from the average. L4, is the maximal
path length (the network perimeter). For a random
network it is approximated by Ly,q, = InN/In(k) [15].

— (d) is the average physical length of the links,
measured in mm. This is not a topological measure
but relevant nonetheless in the present study.

Because of the smoothing caused by the tomography,
nearest (physical distance) neighbors are almost univer-
sally connected, at all thresholds. Thus there is essen-
tially only one component (group of connected nodes) in
all cases. At the highest threshold, there would be a few
voxels that were disconnected from the main component,
but even at a threshold of 0.9, less than 0.4% of the nodes
were disconnected from the main component.

The average over all subjects ({---)5), of the network
parameters for various thresholds and both deviant and
standard conditions are graphed in fig. 2. The standard
deviation of the parameters was also computed to provide
a measure of the variation of these parameters over
subjects. For comparison, the parameters that are found
for a simulated EEG signal, composed of uncorrelated
electrode signals, are graphed along with the experimental
results. This choice of reference signal is discussed more
fully in the following section. Because it is a commonly
used reference, the values of the cluster coefficient and
average path length for random networks with an equal
number of links, are also graphed. In this case, the
uncorrelated electrode signal reference is more useful, since
it represents the parameters that result from a null signal.

Estimation of correlations induced by the tomo-
graphic inverse transformation. — The tomographic
processing induces artificial correlations in the voxel

Fig. 2: Subject average of the network parameters as a function
of correlation threshold: solid is standard, dashed is deviant.
The error bars reflect the standard deviation of the values.
The dotted line is the parameters that results from random
uncorrelated electrode signals. In the (C) and (L) graphs, the
solid and dashed lines without data points are the parameters
for random networks with an equal number of links to the
standard and deviant networks.

activations. In our test data set there were 30 electrode
signals and 2394 voxel signals. The voxel signals are a
linear combination of the electrode signals, and thus the
voxel signals must be linearly dependent. For this reason
there will be correlations in the voxel activations even
if the electrode data is randomly generated and fully
uncorrelated.

It is possible to work with up to 256 electrodes, and this
will certainly increase the effective tomographic resolution.
In addition the LORETA tomographic method uses an
L2 minimum norm, which leads to a very smooth current
field. The use of other methods could reduce the induced
correlations. Nevertheless, even with 256 electrodes and
improved tomographic methods, the tomography induced
correlations will persist, so a thorough analysis of this
effect is needed. Here we provide only an estimate of the
magnitude of the effect of the tomography-induced corre-
lations on the network. The tomography-induced corre-
lations can be estimated by computing the correlations
induced by the tomography when the electrode data is
fully uncorrelated. This measure is also relevant to the
analysis of the impact of uncorrelated noise at the elec-
trodes. The network parameters that results from uncor-
related electrode data are graphed in fig. 2. The network
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Fig. 3: Subject average of the difference between the standard
and deviant network measures, as a function of correlation
threshold. For example, the subject average of the difference
for the degree parameter was computed as follows: (A(k))s =
((k)standard _ (pydevianty " The error bars reflect the standard
deviation of the subject average. It can be seen in these graphs
that the difference is distinguishable from zero for (k), (L) and
(d). while (C) is indistinguishable from zero.

parameters for the actual signals should be viewed rela-
tive to this reference point established by the uncorrelated
signals.

Differences between stimulus conditions. — In
fig. 2 it can be seen that the average network parameters,
(k), (L) and (d) for the standard and deviant networks
are significantly different from each other and from the
background. The cluster coefficient does not appear to be a
significantly different. To clarify the statistical significance
of these differences, and to show that the differences exists
for each individual subject, the subjects average of the
differences of the average parameters for the standard
and deviant networks were computed. For example, the
difference for the degree parameter was computed as
follows:

<A<k>>s — <<k,>standard _ <k>deviant>s-

These results are graphed in fig. 3. It can be seen in these
graphs that the difference is distinguishable from zero for
(k), (L) and (d). While (C) is indistinguishable from zero.
This indicates that (k), (L) and (d) have potential as
biometric measures.

The cluster coefficient is nearly constant over the range
of thresholds studied, see fig. 2. In addition the cluster
coefficient for the uncorrelated electrodes is almost as
large. It is suspected that the correlations cause by
the tomography have in some sense flooded the cluster
coeflicient.

Scale-free behavior. — In fig. 4 and fig. 5 the average
degree distribution, n(k), is graphed. The function n(k) is
the average number of nodes with degree k. The average
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Fig. 4: This is a log-log graph of the degree distribution
averaged over all subjects, for cutoffs from r. =0.4 to r. =0.9.
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Fig. 5: This is a log-linear graph of the degree distribution
averaged over all subjects, for cutoffs from r. = 0.4 to r. =0.9.

is computed over trials and subjects. Figure 4 is a log-
log graph, and thus if n(k) is a power of k it will appear
as a straight line in fig. 4. Such a power law behavior is
associated with a scale-free network. In contrast fig. 5 is a
log-linear graph, and thus if n(k) is an exponential in & it
will appear as a straight line in fig. 5. While neither the
log-log nor the log-linear graphs are linear, the log-linear is
closer to being straight. In this way our results are similar
to those in [16-18], in which the networks were not found
to be scale free, and different from those in [1].

Conclusion. — In this letter we have reported a prelim-
inary study of a method to extract a connectivity network
representing brain interactivity from the brain electrical
activity as observed through EEG measurements. We
have found that, even with the limited spacial resolution
of the tomography, the networks generated from brain
activity under two different stimuli were distinguishable
by their network parameters. The change in the network
parameters with stimulus, was statistically significant
and stable across subjects and at different correlation
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thresholds. There is not a clear indication that the
networks are scale free.

The application of this approach could range from
the basic studies determining the properties of networks
associated with event-related potentials or electro-
encephalography, to the study of pathological brain
electrical responses, to biometrics. However, more studies
are needed in order to compare the information provided
by an electrophysiology complex networks approach with
information provided by other functional techniques, such
as fMRI, and theoretical information to clearly validate
this method. In particular, we plan to analyze elsewhere
in more detail the impact of the tomography on the
network structure, as well as study other variants for the
construction of the networks.

* ok Xk

This work has been partly funded by the Starlab
Kolmogorov program under the auspices of the FURNET
network. GR would like to thank E. RIETMAN for valu-
able discussions, and in particular for pointing out the
relevance of [1]. The authors wish to acknowledge support
received from the Generalitat of Catalonia NECOM group
(SGR2005-00831), the Spanish Ministry of Culture and
Education (SEJ2006-13998), the EU FP6 Sensation Inte-
grated Project (FP6-507231), and Macken Instruments.
Finally, the authors thank C. ESCERA and M. DOLORES
PoLro (U. Barcelona) for data collection.

REFERENCES

[1] EcuiLuz V. M. et al., Phys. Rev. Lett., 94 (2005) 018102.

[2] BRESSLER S. L., The handbook of brain theory and
networks (MIT Press, Cambridge, MA) 2002.

[3] BuzsaKI G. and DRAGUHN A., Science, 304 (2004) 1926.
[4] Nunez P. L., Neocortical Dynamics and Human EEG
Rhythms (Oxford University Press, New York) 1995.

[5] Stam C. J. et al., Cereb. Cortez, 17 (2007) 92.

[6] PascuaL-MAarQul R. D., MicHEL C. M. and LEHMANN
D., Int. J. Psychophysiol., 18 (1994) 49.

[7] Grau C., Escera C., Yaco E. and Poro M. D.,
Neuroreport, 9 (1998) 2451.

[8] MARrco J., GRAU C. and RUFFINI G., Neuroimage, 25
(2005) 471.

[9] NAATANEN R., Attention and brain function (Lawrence
Erlaum Associates Publishers, Hillsdale, New Jersey)
1992.

[10] GoMmEz C., MaRrRco J. and Grau C., Neuroimage, 20
(2003) 216.

[11] Kounios J. et al., Neuron, 29 (2001) 297.

[12] MULERT C. et al., Neuroimage, 13 (2001) 589.

[13] P1zzacALLI D. et al., Am. J. Psychiatry, 158 (2001) 405.

[14] ALBERT R. and BARABASI A. L., Rev. Mod. Phys., 74
(2002) 47.

[15] FroONCzAK A., FRONCZAK P. and HOLYST A., Phys. Rev.
E, 70 (2004) 056110.

[16] HiLGETAG C. C. et al., Philos. Trans. R. Soc. London,
Ser. B Biol. Sci., 355 (2000) 91.

[17] SALVADOR R. et al., Cereb. Cortex, 15 (2005) 1332.

[18] SCANNELL J. W. et al., Cereb. Cortez, 9 (1999) 277.

38004-p5



