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Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowl-
edge derived from implicit learning, which is based on prediction-based mechanisms, may become expli-
cit. The role that attention plays in the formation of implicit and explicit knowledge of the learned
material is unclear. In the present study, we investigated the role that attention plays in the acquisition
of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention
during learning changes the representation of the learned material after a 24 h delay containing sleep. For
that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial
language that contained non-adjacent dependencies (rules) between words whereas different conditions
were established to manipulate the amount of attention given to the rules (target and non-target condi-
tions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to
implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of
the rules occurred regardless of attention, more explicit judgments after learning showed differences
in the type of learning reached under the two attention conditions. 24 hours later, indirect measures
showed no further improvements during additional language exposure and explicit judgments indicated
that only the information more robustly learned in the previous day, was consolidated.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Prediction-based mechanisms appear to play a vital role in the
detection of regularities that govern complex situations such as
human language. Language contains adjacent and non-adjacent
dependencies between elements that should be mastered to, for
example, process ‘recursion’, which is a hallmark of human lan-
guage (Hauser, Chomsky, & Fitch, 2002). Learning non-adjacent
dependencies from language has been claimed to heavily rely on
general prediction learning processes (Misyak, Christiansen, &
Tomblin, 2010b; Perruchet & Pacton, 2006), which often occurs
incidentally, i.e. without the intention to learn (‘‘implicit learning”;
Reber, 1967).

Previous research has evaluated non-adjacent rule learning
using artificial language learning paradigms (see Gómez, 2002;
Peña, Bonatti, Nespor, & Mehler, 2002; Romberg & Saffran, 2013),
in which words or phrases without meaning are built following
the structure AXC, establishing that the first element (A) predicts
the third one (C), whereas the second element (X) is variable. These
artificial paradigms are built as an analogy to what occurs in natu-
ral languages (e.g., he sleeps, she runs). Statistical learning mech-
anisms can track these predictive dependencies, extract the
existing relationship and allow generalization to new contexts.
However, an important question is the degree in which learning
in incidental situations relies on attention. Some studies have pro-
vided evidence that segmentation of a speech stream into discrete
word units can occur incidentally (Saffran, Newport, Aslin, Tunick,
& Barrueco, 1997). In addition, rule generalization is possible under
diverted attention but only as long as learning is based on adjacent
dependencies (Toro, Sinnet, & Soto-Faraco, 2011; Toro, Sinnett, &
Soto-Faraco, 2005). However, tracking non-adjacent relationships
is more complex (Newport & Aslin, 2004). It has been proposed
that the only necessary condition to learn adjacent and non-
adjacent dependencies is the joint attention for the processing of
the two elements in the dependency (Ellis, 2006; Pacton &
Perruchet, 2008). In agreement with this view, some experiments
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have shown that the presence of pauses in the speech signal
(Endress, Nespor, & Mehler, 2009; Peña et al., 2002) and the high
variability of irrelevant elements in the sequence (Gómez, 2002)
are essential for non-adjacent rule learning. Although these studies
did not test the role of attention in the learning process directly,
the importance of these features could reside in the enhancement
of perceptual salience, guiding attention toward the elements that
share the dependency (for a discussion about this topic, see Aslin &
Newport, 2012; Romberg & Saffran, 2013).

Electrophysiological data using event-related potentials (ERPs)
to track the online learning of non-adjacent rules in an artificial
language learning paradigm have also shown that an attention-
modulated ERP component, the P2 component, increases as a func-
tion of learning, which possibly indexes a change in the locus of the
focus of attention during learning (from adjacent to non-adjacent
dependencies) (De Diego-Balaguer, Toro, Rodriguez-Fornells, &
Bachoud-Lévi, 2007) as previously suggested by Gómez and
Maye (2005).

Importantly, understanding learning in incidental situations
should not be limited to explicit judgments. It is also important
to dissociate between the acquisition and storage of new informa-
tion in relation to the implicit/explicit dimension (Frensch, 1998).
During acquisition, knowledge can be initially encoded implicitly,
as it often occurs in incidental situations. However, once learned,
the invariant features (such as the dependency between non-
adjacent elements) are enhanced and can eventually enter con-
sciousness and become more explicit (Cleeremans, 2008). Most
studies have not accounted for this distinction because they have
only evaluated participants’ performances after the learning phase
when learning was accomplished (Saffran et al., 1997; Toro et al.,
2011). Therefore, no information was available for online implicit
learning while manipulating attention. In relation to this point,
recent work has clearly shown the importance of introducing
online measures in addition to the classical more explicit judg-
ments after learning (Batterink, Reber, Neville, & Paller, 2015;
Misyak, Christiansen, & Tomblin, 2010a; Misyak et al., 2010b).

Referring to how representations of the learned information
change over time, previous evidence indicates that sleep promotes
the lexicalization of new words (Davis, Di Betta, McDonald, &
Gaskell, 2009; Tamminen, Payne, Stickgold, Wamsley, & Gaskell,
2010). In addition, it promotes the creation of abstract and gener-
alizable representations in rule learning from language (Gómez,
Bootzin, & Nadel, 2006; Merkx, Rastle, & Davis, 2011; Tamminen,
Davis, Merkx, & Rastle, 2012). Importantly, sleep-related consoli-
dation causes qualitative and quantitative changes in the mental
representation of knowledge outside the language domain (for a
review: Diekelmann & Born, 2010). Moreover, it plays an important
role in promoting the conversion of implicit knowledge into expli-
cit knowledge (Payne, Ellenbogen, Walker, & Stickgold, 2008;
Wagner, Gais, Haider, Verleger, & Born, 2004).

Based on the above-mentioned background, the present study
was developed with two different goals. First, our interest was to
evaluate whether the amount of attention during the learning of
non-adjacent rules affects differently indirect measures of learning
and more explicit judgments on the underlying knowledge of the
rules. Therefore, we developed a paradigm that allowed us to indi-
rectly evaluate online rule learning in different attentional condi-
tions. An artificial language learning task, in which the
participants heard phrases of three artificial words that followed
the form of AXC, was implemented with a word-monitoring task
that acted as a cover task to manipulate attention. Thus, because
learning the underlying dependencies helps to solve the cover task
faster, the reaction times (RT) to the cover task provided an indi-
rect online measure of implicit rule learning (Brandon, Terry,
Stevens, & Tillmann, 2012; Misyak et al., 2010b). Explicit judg-
ments were also used to assess rule learning by administering a
recognition test to the participants after the learning phase. In
addition, our secondary objective was to investigate whether
attention affects the manner in which rule representations are con-
solidated leading to different effects in implicit and explicit assess-
ments of this knowledge. Thus, participants’ direct and indirect
measures were recorded on two consecutive days.
2. Methods

2.1. Participants

Twenty-five students (19 women; mean age: 21.5 SD: 1.9) from
the University of Barcelona participated in this study for either 10
euros or course credits. The students were all native Spanish
speakers and had no history of auditory problems.

2.2. Materials and procedure

Each participant performed two sessions of the same language
learning task (Experiment 1 and 2), separated by 24 hours. Each
experiment consisted of a learning and a test phase (see Fig. 1A).
For the experiments, 24 CVCV bisyllabic novel words (from now
on called ‘‘words”) were created following Spanish phonotactics.
Words were recorded in isolation to avoid intonation cues, in a
sound attenuated booth by a female Spanish native speaker. After-
wards they were combined with a sound editor software (Adobe
Audition) to form the phrases, taking for each phrase three words
from the pool of novel words (e.g., tagi-male-sira; Table 1) and
inserting a 100 ms interval between words. The average duration
of each word was 483.8 ms (± 39.7 ms). The auditory phrases were
presented during the learning and test phases, through head-
phones at a comfortable level and set constant across participants
with the Presentation software.

2.2.1. Learning phase
For the learning phase, words were combined to form rule

phrases (AXC) and filler (XXX) phrases (Fig. 1B). Following the struc-
ture used in previous studies (Gómez, 2002; Gómez & Maye, 2005),
rule phrases took the form AXC (e.g., tagi-male-sira, tagi-fuse-sira,
tagi-pofi-sira) (Table 1), thus establishing that the initial word (A)
determined the third word (C) regardless of the middle element
(X). Six of the words from the pool were used to build three different
AXC rules (i.e. A1_C1: tagi_sira; A2_C2: jupo_runi; A3_C3: pine_ladu).
The remaining 18 (i.e. cilu, mego, lofa, tadi, nuso, pume, male, rosu,
foli, vidu, supa, pevo, ture, medi, catu, gupe, defa, and nigo) were
used as middle words for all A_C structures. Although over the three
structures the 18 different words were presented, each structure
used only 12 of the 18 X elements. The other 6, different for each
structure, were used to test generalization in the recognition phase
after learning. Filler phrases took the form XXX (e.g., male-fuse-posi)
and were created by combining the 18 elements that randomly
appeared in the middle of the rule phrases (i.e. X element in the
AXC phrases) (Table 2). They were combined with the constraint that
the same word could not appear twice in the same phrase and each
X had the same probability to appear in each position. Each filler
phrase was presented only once in the learning phase. These phrases
appeared only in the learning phase (see Fig. 1B).

In the learning phase, the participants were exposed to 36 rule
(see Table 1) and 18 filler phrases (Table 2) that were randomly
intermixed. A 100-ms warning tone was used as an arousing signal
to prepare the participants for the upcoming presentation of the
phrase, which started 400 ms after the tone. Participants per-
formed a word-monitoring task to obtain an indirect measure of
learning by means of the reaction times to each phrase presenta-
tion. The target word remained printed in the middle of the screen



Fig. 1. Design and materials of the study. (A) Illustration of the order of the phases composing Experiment 1 (day 1) and Experiment 2 (day 2). (B) Illustration of the type of
phrases that appeared in each phase of the experiments. The learning phase and the online implicit test required a word-monitoring task whereas the offline explicit test took
the form of a recognition test.

Table 1
Rule phrases used in the artificial language of the experiment. Words forming the
three structures are shaded in grey.

Table 2
Filler and non-rule phrases from the artificial language of the experiment. The target-
word is shaded in grey. Each participant had always the same target word throughout
the experiment.
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throughout the task. Participants were instructed to press, for each
phrase, the left button of the mouse as soon as the target-word
appeared, or the right button if the target was not present in the
phrase. The participants were not informed about the presence of
rules. They had to respond within 1500 ms after the end of the
phrase, otherwise the next trial was delivered.
The target word was always a C word and the three possible C
target words were counterbalanced across participants. The target
was always the same throughout the experiment for each partici-
pant (e.g. C1). Therefore, from the three AXC structures only the
phrases from one structure contained the target word, however,
each A could be used to predict the presence or absence of the tar-
get (e.g. A1 fully predicted the presence of the target C1 while A2, A3

fully predicted its absence). Thus, the transitional probability
between A and C was 1, between A and X was 0.083, and between
X and C or X was 0.05 (i.e., 17 X in filler sentences and 3 Cs in rule
sentences). In contrast, if position is considered in the probability
computation, an X in the initial position predicted the absence of
C. However because X can have 18 values the predictive value of
each specific X was only 0.055.

The word-monitoring task allowed us also to manipulate atten-
tion. First, because the target-word would always appear in the
final position, participants should orient after a few trials their
attention to the final word in all phrases. In addition, because only
one structure contained the target word (e.g. A1XC1), participants
should progressively focus their attention to the specific A element
(e.g. A1), and thus the AXC structure predicting the target because
all the remaining phrases (filler phrases and rule phrases that did
not contain the target-word) led all to ‘‘No” responses. Therefore,
the rules where the target was present were considered attended
rules (target condition), whereas the other two rules were consid-
ered unattended rules (non-target condition).

Note that with this design we can also distinguish the prediction
of the rule from the preparation of the response. X elements in initial
position allow predicting the response but do not predict the specific
item that will appear in the last position. A items allow to predict
both the response and the rule both in the target and non-target con-
ditions. Because both XXX and AXC non-target conditions require
the same ‘‘No” response, differences between them in the learning
phase can only be explained by facilitation due to rule learning.
2.2.2. Test phase
2.2.2.1. Online implicit test. After the learning phase, an online test
was performed with no break or any other indication distinguish-
ing it from the learning phase (Fig. 1A). Participants continued to
listen to rule phrases as previously but filler phrases were replaced
by non-rule phrases (XXC) (Fig. 1B). Non-rule phrases were like the
filler phrases but with a C in the final position (XXC, e.g. male-fuse-
sira). Thus, the first two elements of the non-rule phrases were ran-
domly assigned with the same constraints as the XXX phrases
whereas the third element was always a C element from any of
the three rule structures (Table 2). The introduction of non-rule
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phrases followed the rationale of the classical serial reaction time
tasks. If participants learned the specific dependencies between
each initial and final element of the phrase (the AXC structure),
participants should respond faster and commit fewer errors in rule
phrases than in non-rule phrases. In the rule phrases (AXC) they
could still predict the presence or absence of the target (e.g. C1)
based on the initial element (e.g. A1), whereas in the non-rule
phrases (XXC) the presence of the target could not be predicted
because X predicts with the same probability the target (i.e. C1)
and also the other non-target Cs (i.e. C2 and C3). In contrast to
the classical serial reaction time, here learning was not tested
introducing violations to the rules in order to spare the predictions
of rule phrases for the explicit judgment test after this phase.

2.2.2.2. Offline explicit test. To examine whether more explicit judg-
ments on the rules learned differed as a function of the amount of
attention paid during the acquisition, we directly asked the partic-
ipants to discriminate phrases following the rules (rule phrases
and new rule-phrases) from those violating the rules (violation
phrases). Participants’ explicit judgment of the rules was evaluated
using a recognition test (Fig. 1B). The recognition test was admin-
istered after the rule-learning task on day 1 (Experiment 1) and at
the beginning of day 2 before the rule-learning task (Experiment 2)
(Fig. 1A). Presenting the task at the beginning of day 2 allowed us
to test for changes in performance in the explicit test from day 1 to
day 2 as a function of consolidation, preventing an additional expo-
sure to the rule phrases before the test.

Participants were instructed to press the left mouse button for
phrases that belonged to the pre-exposed language or the right
button for phrases that did not. There was no maximum time to
respond, but the participants were instructed to respond as fast
as possible. Each phrase was delivered immediately after the par-
ticipant’s response to the previous phrase.

In order to test rule learning, we built new rule-phrases for each
of the three rules. New rule-phrases consisted of each of the three
‘‘A_C” structures combined with the 6 words belonging to the X
category that never appeared with that specific structure in the
learning phase. Therefore these phrases followed the rules but
the transitional probability between each element of the structure
and this specific X was 0 in the learning phase.

Two types of rule violations were used following Endress and
Bonatti (2007): (i) we tested violations of the dependency between
the first and third element, in which the first and final word element
were placed in the correct order but belonged to different rule struc-
tures (e.g., A1XC2, A3XC1). This measure allows us to see whether the
participants learned the specific dependency from a certain A to its
corresponding C; (ii) we tested also violations of order positions (cat-
egory violations), in which the third and first words of a rule phrase
were swapped with one another (possible structures: C1XA1, C2XA2,
C3XA3; e.g., sira-male-tagi). This measure allows us to test whether
participants learned the positional information of the categories of
words A and C. Thirty-six different violation phrases were created:
18 dependency violations and 18 category violations.

Thus, from the whole pool of test phrases, half of them were
used for Experiment 1 (day 1) and the other half in Experiment 2
(day 2) to avoid repetition effects. This resulted, for each day, on
the presentation of 36 intermixed test phrases consisting in 9 rule
phrases, 9 new rule-phrases, 9 dependency violations and 9 cate-
gory violations.

3. Results

A Kolmogorov-Smirnov test revealed that reaction times fol-
lowed a normal distribution in both Experiment 1 (D(98) = 0.057,
p > 0.1) and Experiment 2 (D(92) = 0.075, p > 0.1) (Fig. S1),
therefore raw reaction times with no transformation were
introduced in the analyses. Since we had a gender bias (19 females,
6 males in the sample), we initially introduced the gender factor in
all the analyses (i.e. Learning and Test phases). Since the gender
factor was never significant and did not interact with any of the
other factors, the analyses reported here do not include this factor.
In both experiments, accuracy in the word-monitoring task was
almost at ceiling during learning [> 90%]. No differences between
error rates in the different conditions were observed. Raw data
can be accessed in the Supplementary data.

3.1. Experiment 1: Attention effects on learning (Day 1)

3.1.1. Learning phase
Reaction times were calculated from the onset of the third ele-

ment (C) in the phrase. Reaction times from incorrect responses
were not included in the analysis. Outliers, considered when reac-
tion time was 2 standard deviations above and below the mean of
each trial (e.g., the mean reaction time of the first AXC trial for all
the participants, the mean reaction time of the second AXC trial for
all the participants, and so on), were also removed (3.6% of all
trials).

In order to analyze the learning effect, the learning phase was
divided into two blocks, each block containing the mean reaction
times of the first and second halves of the phase (block 1 and block
2 of the learning phase). A 3 (Type of phrase: target rule vs. non-
target rule vs. filler) � 2 (block: 1 vs. 2) within-subject factors
repeated-measures ANOVA was performed. We found a significant
main effect of type of phrase (F(2,42) = 3.35, p < 0.05, gp

2 = 0.13)
and a significant type of phrase � block interaction (F(2,42) =
4.11, p < 0.05, gp

2 = 0.16) (see Fig. 2A). Pairwise t-test comparison
indicated that in block 1, all conditions had equivalent reaction
times (all ps > 0.3). This occurred despite rule phrases containing
the target were the only phrases corresponding to ‘‘yes” responses,
and these are usually faster than ‘‘no” responses. In contrast, in
block 2 a learning effect was observed. Participants were faster
in the rule phrases compared to the filler phrases for both the tar-
get (t(21) = 3.7, p = 0.001) and non-target conditions (t(23) = 2.6,
p = 0.014). No significant difference was found between the target
and the non-target phrases (p = 0.14). These analyses showed that
during the course of the learning phase, participants were able to
take advantage of the predictability in the rule phrases. Impor-
tantly, that occurred both in the target and in the non-target
phrases.

3.1.2. Online implicit test
As we did for the learning phase, mean reaction times were cal-

culated for the first and second halves of the trials from the online
implicit test, resulting in two blocks (block 1 and block 2 of the
online implicit test) (see Fig. 2B). A 2 (rule: rule vs. non-rule) � 2
(attention: target vs. non-target) � 2 (block: 1 vs. 2) within-
subjects repeated-measures ANOVA was performed. This analysis
revealed that participants were faster in rule phrases than in
non-rule phrases (main effect of rule (F(1,23) = 4.9, p = 0.036,
gp

2 = 0.17) and this occurred irrespective of the amount of attention
(none of the interactions were significant; all p > 0.1). No signifi-
cant effect of block was found (p = 0.53). Target conditions were
faster than non-target conditions (main effect of attention: F
(1,23) = 40.7, p = 0.0001, gp

2 = 0.63). This result is of little interest
since in this comparison target conditions correspond to ‘‘yes”
responses that tend to be executed faster than ‘‘no” responses.

Then, we also proceeded to the analyses of the errors in the
detection of the target. Since the number of errors was very low,
we collapsed block 1 and 2 to perform the analysis. A 2 (rule: rule
vs. non-rule) � 2 (attention: target vs. non-target) within-subject
repeated-measured ANOVA revealed a main effect of rule (F(1,23)
= 7.62, p = 0.011, gp

2 = 0.24) indicating that participants committed



Fig. 2. Experiment 1. (A) Learning phase: reaction times from blocks 1 and 2. (B) Online test phase: average of the reaction times from blocks 1 and 2 in the online implicit
test. (C) Offline test phase: participant’s discrimination indexes (d prime) of the rules in relation to category and dependency violations. Dep: dependency violations; Cat:
category violations. The bars represent SEM: standard error of the mean. ⁄⁄⁄ p < 0.001; ⁄⁄ p < 0.01; ⁄ p < 0.05.
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more errors in the non-rule condition for both the target and the
non-target conditions (Fig. S2). The main effect of attention was
marginal (p = 0.056).

3.1.3. Offline explicit test
Discrimination indexes were calculated by transforming the

percentage of correct responses into d prime scores (d0) to control
for response bias (MacMillan & Creelman, 2005). To determine the
d0 for each subject and condition, hits (‘‘Yes” responses for correct
items: rule and new-rule test items) and false alarms (‘‘Yes”
responses for incorrect items: dependency and category violations)
were calculated. In order to better understand the type of knowl-
edge acquired from the pre-exposed structures in target and
non-target conditions, we calculated two different d0. First, we
measured the ability of discriminating rule items from violations
of dependency. To do that, we used as false alarms for the target
conditions, the proportion of times that participants say ‘‘yes” to
a violation of the dependency of the target rule condition (where
the first A element was from the target rule); for the non-target
condition, the false alarms were calculated as the proportion of
times that participants say ‘‘yes” to a violation of the dependency
of the non-target rule conditions (where the first A element was
part of one of the two non-target rules). Second, we calculated
the ability of discriminating rule items from violations of category
items. For that, we used as false alarms for the target conditions,
the proportion of times that participants responded ‘‘yes” to a vio-
lation of the category of the target rule (an item that started with a
C element from the target rule); for the non-target condition, the
false alarms were calculated as the proportion of times that partic-
ipants responded ‘‘yes” to a violation of the category of the non-
target rule conditions (an item that started with the C element of
the non-target rules). Positive d0 values indicate good discrimina-
tion and learning, values of d0 close to 0 indicate no discrimination
(see Fig. 2C).

The d0 values were entered into a repeated-measures ANOVA
with 2 (attention: target vs. non-target) � 2 (violation: depen-
dency vs. category) within-subject factors. A main effect of atten-
tion (F(1,24) = 11.5, p = 0.002, gp

2 = 0.32) and a main effect of
violation (F(1,24) = 12.83, p = 0.002, gp

2 = 0.34) were observed. No
significant interaction was found (p > 0.9). Nevertheless, in the tar-
get condition, post-hoc one-sample t-test against 0 confirmed that
participants succeeded discriminating rule phrases from phrases
with dependency violations (t(24) = 3.5, p = 0.002) and from
phrases with category violations (t(24) = 5.01, p = 0.0001). In con-
trast, in the non-target condition, participants were able to dis-
criminate the rule phrases only from phrases with violations of
category (t(24) = 4.22, p = 0.0001). Their discrimination ability
from phrases with a violation of dependency was not significant
(p > 0.6). Therefore, while in the target condition participants were
able to learn not only the position of the A and C category but also
the specific dependency between them, this latter information was
not learned from the rules without the target.

3.2. Experiment 2: Effect of attention on consolidation

3.2.1. Offline explicit test (day 2)
In order to look at the consolidation effects of the more explicit

knowledge of the rules, the same ANOVA analysis that was applied
to the offline explicit test in experiment 1, was performed on this
same phase in experiment 2, which was carried out after a delay
containing sleep. This test was administered at the beginning of
the session in experiment 2 (see Fig. 1). The analysis revealed a
main effect of violation (F(1,22) = 25.2, p = 0.0001, gp

2 = 0.53)
(Fig. 3A). Neither the main effect of attention nor the interactions
between these factors were significant (both p > 0.1). Post-hoc
one-sample t-test against 0 revealed that on day 2, participants
were able to discriminate rule phrases from category violations
in both the target (t(22) = 4.22, p = 0.0001) and the non-target con-
ditions (t(22) = 3.09, p = 0.005). However they were not able to dis-
tinguish the rule phrases from phrases containing dependency
violations neither in the target nor in the non-target conditions
(both p > 0.3). In order to test the differences in consolidation we
included the factor day into the ANOVA (day 1 vs day 2) and per-
formed a t-test between the discrimination indexes in day 1 and
day 2 for each condition. The interaction between day, attention
and violation was marginally significant (F(1,22) = 3.42,
p = 0.078, gp

2 = 0.13). The decrease in performance observed from
day 1 to 2 for the discrimination of dependency violations in target



Fig. 3. Experiment 2. (A) Offline test phase: participant’s discrimination indexes (d prime) of the rules in relation to category and dependency violations. (B) Learning phase:
reaction times from blocks 1 and 2. (C) Online test phase: average of the reaction times from the blocks 1 and 2. (C) Dep: dependency violations; Cat: category violations. Bars
represent standard error of the mean. ⁄⁄⁄ p < 0.001; ⁄⁄ p < 0.01; ⁄ p < 0.05
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conditions was also marginally significant (t(22) = 1.92, p = 0.068).
The remaining comparisons were not significant (all p > 0.5)
(Fig. 3A).

3.2.2. Learning phase (day 2)
We looked at the pattern of learning progression after a delay

containing sleep by performing the same ANOVA as the one per-
formed for the learning phase on experiment 1. We found a main
effect of type of phrase (filler vs. target rule vs. non-target rule)
(F(2,42) = 17.47, p = 0.0001, gp

2 = 0.45) (Fig. 3B). Neither block
nor type of phrase � block interaction were significant (all
p > 0.3), indicating that no further learning was observed. This
effect was driven by overall faster reaction times in target rule
phrases than in the other two (non-target rule and fillers) that
did not differ from each other. Post-hoc t-test comparison between
type of phrase collapsing by block, revealed that target rule phrases
were faster than both filler (t(22) = �5.5, p = 0.0001 and non-target
rule phrases (t(22) = �6.2, p = 0.0001), whereas reaction times
from filler and non-target rule phrases did not differ (p = 0.4).

3.2.3. Online implicit test (day 2)
The same ANOVA performed for the online test of experiment 1

was applied to day 2 (Fig. 3C). It revealed a significant main effect
of attention, which again may relate to the difference between
‘‘yes” and ‘‘no” responses (F(1,21) = 16.9, p = 0.0001, gp

2 = 0.44),
and a main effect of block (F(1,21) = 4.51, p = 0.046, gp

2 = 0.17),
where responses were faster on block 2 compared to block 1. The
main effect of rule and the interactions were not significant on
day 2 (all p > 0.4).

As we did for the experiment 1, we proceeded to the analysis of
the errors in the detection of the target. After collapsing the block 1
and 2, a 2 (rule: rule vs. non-rule) � 2 (attention: target vs. non-
target) within-subject repeated-measured ANOVA revealed a main
effect of rule (F(1,22) = 6.3, p = 0.02, gp

2 = 0.22). In addition, in con-
trast to experiment 1, we found here a rule � attention interaction
(Fig. S3). A paired-samples t-test revealed that participants com-
mitted more errors only in the non-rule condition that carried
the target word: target rule vs. target non-rule (t(22) = 2.5,
p = 0.02); non-target rule vs. non-target non-rule (t(22) = 0.6,
p = 0.53).
4. Discussion

In the present study, we sought to investigate how the amount
of attention paid during the learning phase (1) affects the indirect
implicit measures and more direct explicit judgments of the non-
adjacent rule knowledge; and (2) whether it affects to the form
in which rules are consolidated. Our online implicit measures dur-
ing the learning phase revealed learning both for the target and the
non-target rules, suggesting that learning occurred irrespective of
the amount of attention. However when we directly asked for
more explicit judgments in the recognition test we found differ-
ences in the type of knowledge acquired. Participants were able
to learn both the positional information of the word categories
and the specific dependency of the target rule (‘‘attended”) but
only the former for the non-target (‘‘unattended”) rules. Neverthe-
less, only the knowledge on the category information turned to be
long lasting 24 hours later in both target and non-target
conditions.

Previous studies on language learning with artificial languages
(Gómez, 2002; Peña et al., 2002; Saffran, Aslin, & Newport, 1996;
Saffran et al., 1997; Toro et al., 2005) have used direct measures
of learning administered after the learning phase. It is however
notable that the authors used 2-alternative forced choice tests that
are more sensitive to influences from implicit memory (Voss,
Baym, & Paller, 2008; Voss & Paller, 2009). More direct measures
using recognition tests have proved to be less sensitive to capture
the underlying knowledge in this type of language learning para-
digms (Kabdebon, Pena, Buiatti, & Dehaene-lambertz, 2015).
Directly asking about one’s knowledge of the rules has been con-
sidered to evaluate conscious and explicit knowledge (Dienes &
Perner, 1999). However, knowledge may not be accessible through
explicit measures in all the cases (Reber, 1967). For instance,
prediction-based cognitive mechanisms can track the sequences
(e.g. the non-adjacent relations in this study) and extract knowl-
edge of the dependencies between the elements (as it occurs in
serial reaction time tasks). Then, the knowledge regarding the
exposed sequence is more sensitive to indirect (i.e. through mea-
surement of reaction times) than direct tests, in which the partic-
ipants are openly questioned about the sequence (Cleeremans,
Destrebecqz, & Boyer, 1998; Jiménez, Méndez, & Cleeremans,
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1996). The measurement of the reaction times during the cover
word-monitoring task offered us the possibility to get an index that
is more likely to reflect implicit rule knowledge. Although some
explicit knowledge may influence reaction times, this learning
measure was inherently more sensitive to implicit knowledge
because the participants were not directly requested to inform
about the rule and were merely performing a cover task in which
performance could only improve if the rules were learned.

Explicit judgments were also collected after learning, using a
recognition test. In this test, the participants were directly asked
to judge whether a sentence belonged to the language previously
learned. Although the answer to this direct question may also be
influenced by implicit knowledge, the answer requires the partici-
pants’ conscious access to the acquired information and therefore
it is more likely to reflect a measure of explicit memory in compar-
ison with the online indirect test. There are other measures that
can be used to complement this type of direct test in order to mea-
sure explicit representations. For example, a recent study has used
confidence ratings about the answers in a 2-alternative-forced
choice in which they asked about the learned adjacent and non-
adjacent dependencies structures in order to measure the explicit
access to the knowledge (Romberg & Saffran, 2013). Our results
add to this and other previous research (Batterink et al., 2015;
Misyak et al., 2010a) showing that the combination of online mea-
sures and also different offline tests tapping more or less explicit
knowledge increase our sensitivity to better comprehend the type
of underlying knowledge acquired by the participants.

Our results show that participants were able to exploit the
dependency between the elements forming the rules to perform
faster the cover task, leading also to increased errors when the last
word of the dependency appeared unexpectedly. Importantly, this
occurred in both the target and in the non-target conditions. The
ability of acquiring useful information about the underlying struc-
ture of the material incidentally has been previously shown in the
visual domain (Chun & Jiang, 1998). Consistent with our results,
serial reaction time tasks measuring implicit learning have shown
that learning occurs even when attention is engaged in a secondary
counting task (Frensch, 1998; Jimenez & Mendez, 1999). However,
it has also been proposed that a minimal level of attention is
required, even for implicit learning, to capture the relationship
between non-adjacent elements (such as the elements presented
in our task) (Pacton & Perruchet, 2008). Regarding this last point,
it is worth mentioning that our manipulation does not imply that
attention was completely removed in the non-target conditions.
In fact, it is likely that initially, before learning the specific depen-
dency (A-C), the participants rapidly noticed that the target was
always located in the final position (in the C, given an AXC
sequence). This prior learning might have then guided attention
to that location (regardless of whether the sequence contained
the target or not) and represented minimal attentional involve-
ment to the non-target sequences that might have been sufficient
to implicitly learn the rules. The participants then would have
learned that a stimulus (i.e. the A element of the AXC rule) helped
predict the appearance of the target (i.e. C), as it occurs in percep-
tual learning experiments (Seitz & Watanabe, 2008; Watanabe,
Náñez, & Sasaki, 2001). The participants then might have focused
on the elements of the target rules and ignored the others (non-
target rules). Hence, the representation of the rule containing the
target became more explicit and therefore more sensitive to the
explicit test, whereas the non-target rules remained more implicit
(which required less attention).

The fact that the focus of attention changes as learning occurs is
related to, for example, Jiang and Chun’s (2001) proposal of a bidi-
rectional relationship between attention and previous experience.
Thus, once a minimum degree of learning has occurred, the focus of
attention is internally guided toward elements involved in that
learning. Simultaneously, what is learned from that point on is
affected by the amount of attention allocated to it. This scenario
can be obviously observed in first language acquisition during
early infancy. In this sense, child-directed speech, with its prosodic
exaggerations, may guide attention to the important components
of the speech signal that simplify the acquisition of words and
rules from fluent speech (Dominey & Dodane, 2004). Once some
learning has occurred, attention may be guided internally based
on previous experience and does not have to rely only on salient
external cues (De Diego-Balaguer, Martinez-Alvarez, & Pons, 2016).

One set of experiments that did not directly address the role of
attention in learning provided evidence suggesting that attention
may promote non-adjacent rule learning. In this sense, the impor-
tance of some cues presented in the stream could lie, at least par-
tially, in their ability to attract attention. For example, Peña et al.
(2002) showed that the extraction and generalization of AXC rules
from fluent speech was only possible when short pauses were
inserted between the AXC words during the training phase. Pauses,
because of their natural salience, may automatically capture atten-
tion (De Diego-Balaguer et al., 2007, 2016) and help segmentation.
Attention is then free to be allocated to the first and last elements
of the segmented words to learn rule dependency (A-C) because
given a sequence, attention tends to be allocated to elements from
the start and end (Endress et al., 2009). On the other hand, Gómez
(2002) showed that given a stream formed by successive AXC
units, the degree in which the rules are learned and generalized
depends on the variability of the variable element (X). Hence, in
this case again, the system learns to ignore the variable elements
and focus attention on the stable ones, helping learning of the
non-adjacent rule.

Previous studies taking offline measures with 2-alternative
forced choice tasks have addressed the role of attention in speech
segmentation, which is a related and important aspect of language
acquisition (Saffran et al., 1997; Toro et al., 2005). Saffran et al.
(1997) administered a speech segmentation task to two groups
of participants, children and adults, engaged in a cover task (i.e. a
computer coloring program). Word learning occurred incidentally
in both groups, although the performance when a concurrent task
was administered was moderate compared to performance with-
out interference (Aslin, Saffran, & Newport, 1998). The authors
concluded that learning occurred even in the absence of focused
attention to the language input. However, Toro et al. (2005), who
also used the identical speech segmentation task but with three
different attentional manipulations, concluded that some degree
of attention was necessary to attain a certain level of word seg-
mentation. In addition, Toro et al. (2011) studied the role of atten-
tion in rule generalization using a repetitive-based rule (AAB or
ABA) that was different from the non-repetitive rule used in our
study. The authors observed that attention had a different role in
rule generalization depending on the underlying structure of the
rules (attention was required to generalize non-adjacent structures
but not adjacent structures). Because learning and generalizing
non-adjacent structures is more difficult than learning adjacent
structures (Newport & Aslin, 2004), the results suggest that the
importance of attention in learning also depends on the degree
of difficulty of the given task (see also Jimenez and Mendez
(1999) for non-linguistic material). In our study it is interesting
to notice that learning of the categories, that is the positional infor-
mation of each word category (i.e. A initial, C final) was learned
both in target and non-target conditions when an explicit judg-
ment was required in the recognition test. In contrast, the specific
dependency information required attention to be correctly recog-
nized despite the online test indicated that participants learned
the specific dependencies of the rules. This suggests that the
amount of attention provided during the learning phase affects
the way that information is stored and accessible. Our results
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contribute evidence to how attention is necessary for the explicit
access of the knowledge of non-adjacent rules, whose difficulty
may be greater than for adjacent elements (Saffran et al., 1997;
Toro et al., 2005) or repetitive-based rules (Toro et al., 2011).

In relation to consolidation, previous studies have observed that
sleep qualitatively affects the consolidation of rules. Studies using
serial reaction time tasks observed that the process of conversion
of implicit to explicit knowledge was supported by sleep
(Cleeremans, 2008; Wagner et al., 2004; Wilhelm et al., 2013). In
the language domain, Gómez et al. (2006) exposed 15-month-old
infants to an artificial language formed by three-word sentences
following the structure AXC. The authors reported that only infants
that napped after the learning session were able to generalize the
learned structure to new material, thus suggesting that sleep pro-
moted the formation of more abstract representations of the rules.
Similarly, Tamminen et al. (2012) observed that when adults
learned new affixes with an associate meaning embedded with
existing words (e.g., buildnule, climbnule), the generalization of
those affixes to new words only appeared after a sleep period
(see also Merkx et al., 2011).

In our case, irrespective of attention, performance did not
improve after a 24 h delay containing sleep. Nevertheless, it is
interesting to notice that category learning, that is the positional
information of each word category (i.e. A initial, C final), was more
robust than learning of the dependencies, since it was maintained
after sleep in both the target and the non-target conditions. In con-
trast, the specific dependency information required attention to be
learned on day 1 and was forgotten after sleep. Because the learn-
ing of the specific dependencies was modest even in day 1, it could
be the case that only more robustly learned information was con-
solidated (Wilhelm, Metzkow-Mészàros, Knapp, & Born, 2012). As
an alternative or additional factor, it could also be that because
the creation of categories is a more abstract learning, it was more
prone to be consolidated after a short exposure. This result is sim-
ilar to what Gómez et al. (2006) and Hupbach, Gomez, Bootzin, and
Nadel (2009) reported in infants. The authors reported that only
infants that napped after the learning session retained the abstract
relation between the initial and final elements of the rule, thus
they were capable of generalizing this abstract relation to similar
but new stimuli, suggesting that sleep promoted the formation of
abstract representations of the acquired knowledge. Even if our
results are in the same direction (i.e. participants remembered
the positional information but not the specific dependencies after
a period of 24 hours containing sleep), we did not test participants
with completely new material to assess if they were able to trans-
fer the abstract knowledge to a completely new language. In addi-
tion, it would have been interesting to study the consolidation
effect in the implicit measure, however the design of our study
did not allow us to observe it because on the day 2, participants
were tested with the offline explicit test before the word monitor-
ing/language learning task (see Fig. 1A), thus the participants were
previously exposed to the material that day. Nevertheless we did
observe that after a 24 h delay containing sleep, reaction times
continued to decrease overall with further exposure to the lan-
guage. This improvement was not specific to the rules. Indeed no
differences in reaction times between rule and non-rule conditions
were observed in the online test and differences in error rates were
only present in the target condition. This loss of learning compared
to what we observed on day 1 was consistent with the explicit
measures previously commented where only knowledge of posi-
tional information of the word categories appeared to be pre-
served. Because participants did not sleep immediately after
learning, the interference received before the day 2 testing could
have prevented the consolidation effects to arise (Hupbach et al.,
2009; Talamini, Nieuwenhuis, Takashima, & Jensen, 2008). How-
ever, this would not explain why learning effects were not present
on day 2. Alternatively, the salience of the category violations in
the offline explicit test on day 1 may have biased the information
consolidated for day 2. This may have also biased attention to focus
only on positional information in the online task that followed the
offline explicit test on day 2. Despite the same attentional manip-
ulation and same artificial language was used on day 2, we
observed sensitivity to the dependencies only in the analysis of
errors and only for the target condition on day 2 (Fig. S3). No dif-
ferences were observed for the online measures of learning and
test (Fig. 3B and C).

Summarizing, this study used an artificial language task, which
allowed the online implicit measurement of learning of non-
adjacent rules acquired throughout the session in addition to expli-
cit offline learning measures. The present results showed that
attention modulates the knowledge acquired from learning.
Whereas incidental learning of the rules could be observed regard-
less of the amount of attention, the offline more explicit measures
suggest that the structural information acquired from the rule
exposure depends on the amount of attention paid during the
acquisition. After a night of sleep, at least with the online and off-
line tests we have used in this study, we cannot conclude that the
amount of attention affects differentially the consolidation
processes.
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