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Abstract
Individual experiences often overlap in their content, presenting opportunities for rapid generalization across them. In this
study, we show in 2 independent experiments that integrative encoding—the ability to form individual and across memory
representations during online encoding—is supported by 2 distinct neurophysiological responses. Brain potential is
increased gradually during encoding and fit to a trial level memory measure for individual episodes, whereas neural
oscillations in the theta range (4–6 Hz) emerge later during learning and predict participants’ generalization performance in
a subsequent test. These results suggest that integrative encoding requires the recruitment of 2 separate neural
mechanisms that, despite their co-occurrence in time, differ in their underlying neural dynamics, reflect different brain
learning rates and are supportive of the formation of opposed memory representations, individual versus across-event
episodes.
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Introduction
Memories do not simply consist of individual records of directly
experienced events, but also include representations built by
relating information acquired across multiple discrete episodes
(Eichenbaum 1999). Flexibility in combining memories in novel
ways to infer new information is essential to behavior in an
ever-changing environment, and the study of the underlying
neural mechanisms has become a great challenge in cognitive-,
theoretical-, and systems-level memory research (Kumaran
and McClelland 2012; Zeithamova et al. 2012a; Preston and
Eichenbaum 2013).

A simple, effective way to organize both the specific and the
relational information accrued across memories is to encode
common features of related experiences into the same represen-
tational elements (Cohen and Eichenbaum 1993; Eichenbaum
1999; O’Reilly and Rudy 2001). Thus, encountering an event
that has features overlapping with previously encoded events can
trigger retrieval of memory of the past events, and this, in turn,
can lead to the encoding of discrete events in an integrated
representation. This mechanism has been termed “integrative
encoding” and it allows direct storage in memory of the relation
between elements that were not experienced together (Shohamy
and Wagner 2008). Thus, on testing, generalization is not a
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reconstructive inference-based process based on flexible retrieval
of multiple memories (Dusek and Eichenbaum 1997; Heckers
et al. 2004; Preston et al. 2004; Greene et al. 2006) but rather is a
direct expression of knowledge encoded in memory as a synthe-
sis of information across multiple experiences. The fundamental
advantage of integrative encoding is, therefore, that it allows the
detection and the encoding of generalizations as events unfold
over time and the storing of these generalizations as memories,
making them available when needed in the future.

Central to integrative encoding is the assumption that the
retrieval of previous event episodes and the formation of an
integrated representation that binds together information
across episodes are rapidly intertwined during encoding and
that they rely on different neural mechanisms coordinated by
the hippocampus (O’Reilly and Rudy 2001; Shohamy and
Wagner 2008; Zeithamova and Preston 2010; Kumaran and
McClelland 2012; Zeithamova et al. 2012a). While one neural
response would signal the process of retrieval of individual
memories, another neural response would index the recruit-
ment of memory processes, supporting inferential learning or
generalization. Thus, theoretical work (McClelland et al. 1995)
has long established that the encoding of specific events from
the past (e.g., A follows B and B follows C) and the formation of
a general structure of our experiences (A follows C) requires the
engagement of 2 different neural coding mechanisms (Kumaran
and McClelland 2012), both targeting the involvement of the
hippocampus as well as the hippocampus–neocortical inter-
action (McClelland et al. 1995; Norman and O’Reilly 2003). In
doing so, the brain can deal with the computational tension
of encoding and retrieving individual episodes while being
able to extract the commonalities based on overlapping
elements with other existing memory episodes (Norman and
O’Reilly 2003). These 2 neural mechanisms should be opera-
tively identifiable on the basis of testable predictions. First,
because generalization depends on having learned the indi-
vidual episodes, memory integration should occur later,
rather than earlier, in learning. Thus, the neural mechanisms
supporting the retrieval of individual event memories and across-
episode (i.e., inferred) memory representations should appear
distinctly over the course of learning a task. And second, given
that the succession of event episodes in real life is very fast,
these 2 processes should take place very rapidly, possibly during
online encoding.

In this study, we sought to test the hypothesis that distinct
neurophysiological mechanisms support the online formation
of individual and across-episode memory representations,
thought to underlie integrative encoding. To address this ques-
tion, we recorded scalp electrophysiological (EEG) signals in
2 independent experiments from 70 participants while they
were engaged in an adapted version of associative learning and
generalization tasks (Shohamy and Wagner 2008). The fine-
grained temporal resolution of the EEG allows us to investigate
the neural dynamics sustained during very rapid cognitive
operations, which is critical to test the prediction that neural
mechanisms should appear intertwined and occur very rapidly
during encoding. In addition, different neural mechanisms
can be simultaneously measured with EEG activity, thereby
enabling the possibility that 2 neural signals to be measured
independently of each other. Concretely, we investigated the
possibility that integrative encoding is supported by evoked
neural responses, registered as event-related potentials (ERPs)
and changes in ongoing neural oscillatory activity, specifically
in the theta range (3–9 Hz). Indeed, the combined study of ERPs
and neural oscillations has provided critical insights into the

timing and the neural dynamics operating during encoding,
maintenance and memory retrieval episodes (Düzel et al. 1997;
Rugg et al. 1998; Paller and Wagner 2002; Düzel et al. 2010), and
they have been shown to be sensitive to medial temporal lobe
lesions (including the hippocampus) (Düzel et al. 2001).

First, successful recollection of a memory episode upon
cue presentation triggers a slow ERP component rising after
~500ms at posterior scalp regions, known as late posterior
component (LPC) (Curran 2000; Friedman and Johnson 2000).
LPC has been shown to arise during the successful retrieval of
episodic but not semantic memory information and to be
hippocampus-dependent (Düzel et al. 2001; Horner et al. 2012),
thereby being well established nowadays as an EEG signature
of explicit retrieval of an event episode. Because integrative
encoding requires the reinstatement of previous event memories
from partial cues, we predict that LPC signals the ability to
remember episodic events and that LPC modulation occurs at the
expense of the ability to generalize novel events.

Furthermore, the possibility that neural oscillations in the theta
range are critical in integrative encoding is motivated by theoretical
models and neurophysiological data from animals that suggest
that the hippocampus dynamically shifts between encoding and
retrieval states (Hasselmo et al. 1995; Hasselmo and McClelland
1999), thus serving as a regulatory mechanism of encoding/
retrieval-derived communication with neocortical regions
(Hasselmo and Eichenbaum 2005). In fact, the hippocampus–
neocortex network is a primary conduit for cerebral informa-
tion flow between learning and memory. It has been proposed
that the hippocampus creates “pointer” representations, link-
ing together activity in multiple cortical areas pertaining to
the representation of information from different overlapping
episodes and facilitating the formation of a joint representation
integrating multiple interrelated event episodes (O’Reilly and
Norman 2002). Importantly, effective communication between
the hippocampus and the neocortex involves oscillations. For
instance, the prefrontal cortex, which receives monosynaptic
hippocampal projections (Jay and Witter 1991; Thierry et al.
2000), has been shown to be functionally connected to the
hippocampus: hippocampal theta synchronizes prefrontal cortex
neurons (Siapas et al. 2005) and local field potentials (Hyman et al.
2005), and the degree of hippocampus-prefrontal theta synchrony
increases during the course of successful encoding in a task
(Benchenane et al. 2010). Furthermore, animal (Jones et al. 2012)
and functional (Wimmer and Shohamy 2012; Zeithamova et al.
2012b) as well as structural (Gerraty et al. 2014) neuroimaging
studies in humans have shown that the hippocampus–neocortical
network may be critical to the formation and use of flexible repre-
sentations to guide choices and actions in the future. Thus, in the
current investigation we reasoned that theta oscillations would be
critically associated with the formation of integrative memories
during encoding, thereby supporting generalization performance
in a later test.

In the current investigation, we adapted an acquired equiva-
lence task developed by Shohamy and Wagner (2008) (Fig. 1A;
Task Design). The task was structured in 2 encoding phases,
each of them followed by a test phase (Fig. 1A). On each trial of
the encoding phase, participants learned to associate a face
with a scene via a recognition memory test in which they were
requested to choose which of 2 scenes went with the face, and
then received feedback. While each face-scene association was
encoded individually, there was partial overlap across events,
so that pairs of faces were associated with a common scene
(e.g., F1–S1; F2–S1). In addition to learning the F1–S1 and F2–S1
associations, participants were concurrently trained in a
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second association for one of the faces (i.e., F1–S2; Fig. 1A).
Thus, the initial encoding phase consisted of 3 different
types of stimulus combinations that contained partial overlap
(F1–S1; F2–S1; F1–S2). Therefore, while it is expected that the
overlap between F1–S1 and F2–S1 elicited across-episode inte-
gration during learning, the additional learning of the F1–S2
association would lead F2 to also become associated with S2
(Grice and Davis 1960; Hall et al. 1993; Collie et al. 2002).

Following each of the 2 encoding phases, a test phase tested
participants’ ability to generalize. Specifically, generalization
trials tested whether participants would choose S2 when presented
F2 even though they had never encountered this pairing at study
(Fig. 1A). These generalization trials were tested together with trials
that examined retention of knowledge about the associations that
had been previously encountered (F2–S1; F1–S1; F1–S2; “trained”).
Feedback was not provided during this phase, to prevent new
learning occurring across test trials.

Materials and Methods
Participants and Material

A total of 70 right-handed volunteers (28 males) participated in the
2 experiments (N = 37 in Experiment 1; N = 33 in Experiment 2).
Mean age for participants was 23.5 years (SD = 5.4 years). All parti-
cipants had normal or corrected-to-normal vision. The study was
approved by the Ethics Committee of the University of Barcelona
and all participants gave written consent before starting the
experiment. All participants received 20€ for participation. In all, 37
participants participated in Experiment 1 and 33 participated in
Experiment 2.

The stimuli consisted of 24 faces taken from a standardized
database (Lundqvist et al. 1998) and 24 scenes (12 natural land-
scapes and 12 urban scenes). Stimuli were structured into 12

subsets, such that 2 faces (F1, F2) were paired with 2 scenes
(S1, S2), so that we could obtain 4 associations for every subset:
F1–S1, F1–S2, F2–S1, and F2–S2. As for the second experiment,
88 faces and 152 scenes from different databases (Minear and
Park 2004; Langner et al. 2010; Xiao et al. 2010) were used.
Twenty-four faces and 24 scenes were used for the 12 subsets
of associations and the remaining 64 faces and 128 scenes
served as novel stimuli (fillers) and were presented throughout
the task.

Task Design

Experiment 1
The paradigm was adapted from the learning and generaliza-
tion task described by Shohamy and Wagner (2008). The task
consisted of 3 phases: preexposure, encoding, and test. We
included the preexposure phase to avoid/reduce variability in
the structure of the task although the study led by Shohamy
and Wagner (2008) demonstrated that preexposure to the stimuli
has no effect on the tasks. Therefore, we did not analyze the
corresponding data. Following preexposure, there was the
encoding phase, during which participants learned a series of
face-scene associations using feedback. The generalization pro-
cess was expected to occur during this phase. After this, in order
to measure participants’ retention and their capacity to general-
ize, participants were tested on the previously learned associa-
tions and on new face-scene combinations meant to be solved
by generalization. In the test phase, no feedback was provided.
Both the encoding and test phases were performed twice in a
row so that there was a first encoding and test followed by a
second encoding plus test.

During the preexposure phase, half of the stimuli that
would appear throughout the task were displayed individually.
Participants were asked to indicate with the right and left
arrows of the keyboard whether the stimulus they were seeing
was a person or a scene. Trials consisted of the appearance of a
single stimulus (Face or Scene) presented in the center of the
screen for 1250ms. Presentation of male/female and landscape/
urban scene categories was counterbalanced by presenting
each stimulus 8 times. In order to randomize and distribute the
8 repetitions throughout the preexposure phase, we divided the
24 stimuli (12 faces, 12 scenes) into 4 blocks of 48 trials from
which each stimulus was presented twice. The order of presen-
tation of each block was randomized across participants.

Regarding the encoding phase, 3 associations of each of
the previously formed subsets were trained (F1–S1, F1–S2, and
F2–S1). Each trial consisted of the presentation of a face at the
top of the screen and 2 scenes at the bottom for 2500ms.
Participants had to wait for the appearance of the message
“RESPONSE” and they then had 1000ms to indicate by pressing
a button which of the 2 scenes was associated with the face.
Following participants’ choices, a delay period (gray back-
ground) of 1000ms preceded the feedback, which consisted of
the presentation of either a pictograph of a smiling face (right
choice) or a pictograph of a sad face (wrong choice), and it
remained on the center of the screen for 1000ms. At each stage
(first encoding and second encoding), each association was
shown 4 times in random order, so that by the end of the task,
each pair was presented 8 times. The appearance of the scenes
on the right or left side of the screen was counterbalanced
through the 8 presentations. Additionally, in order to avoid
stimulus–response learning strategies, every scene was shown
as a correct choice for a particular face and also as an incorrect
choice when appearing with other faces, with the restriction

Figure 1. Schema of the experimental design and behavioral results. (A)

Overview of the acquired equivalence task (Shohamy and Wagner 2008) and (B)

schema of how early and late encoding trials were distributed throughout the

task. (C) Histogram of participants’ performance for trained and inference trials

at the late test. Note that participants correctly learned individual associations,

but there was great variability in their ability to generalize them to novel pairs.
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that it could not appear twice as an incorrect choice with the
same face. Therefore, the correct scene for a given face was
always the same, but the incorrect scene was variable.

During the test phase all the possible associations of each
subset, the trained ones (F1–S1, F2–S1, and F1–S2) and the
untrained ones (F2–S2), were presented in random order. The
structure of the presentation was the same as in the encoding
phase (1 face, 2 scenes), but in this case, pictures remained
on screen until the participants responded, and there was no
feedback informing the participants of the result of their
choice. In both the first and the second test, each association
was presented a single time and the side of the scene was
counterbalanced between the 2 tests. In all three phases, trials
were separated by an inter-trial time randomized between 750
and 1250ms.

Experiment 2
The task design in Experiment 2 was the same as in Experiment 1,
except that throughout the entire task, there were 64 presentations
composed of faces and scenes that would only appear once (fillers)
during encoding and never presented in the test. Also participants
were not preexposed to all items before encoding. Fillers were
distributed randomly during encoding but homogeneously dis-
tributed throughout the task so that there was 8 fillers for each
of the 8 repetitions of the encoding. Feedback for these novel
stimuli was random so that 50% of the responses would be
given as correct and 50% as incorrect.

EEG Recording

In the 2 experiments, EEG was recorded (band-pass filter: 0.01–
250Hz, notch filter at 50 Hz, and 500 Hz sampling rate) from the
scalp using a BrainAmp amplifier and tin electrodes mounted
in an electrocap (Electro-Cap International) located at 29 stand-
ard positions (Fp1/2, Fz, F7/8, F3/4, FCz, FC1/2, FC5/6, Cz, C3/4,
T3/4, Cp1/2, Cp5/6, Pz, P3/4, T5/6, PO1/2, Oz) and at the left and
right mastoids. An electrode placed at the lateral outer canthus of
the right eye served as an online reference. EEG was re-referenced
offline to the linked mastoids. Vertical eye movements were
monitored with an electrode at the infraorbital ridge of the
right eye. Electrode impedances were kept below 5 kΩ. EEG was
low-pass filtered offline at <16Hz for ERP analysis.

ERP Analysis

For each participant, EEG data were studied from cue trials of
the first and second encoding phases. ERPs were studied by
extracting response-locked EEG epochs of 2000ms starting at
100ms before the cue onset. This time period corresponds to
the interval in which cue-associations are presented and
allegedly learned. Consequently, this was the time window in
which we expected to discern a distinctive effect of memory
recollection such as a modulation of the late positive component
(LPC, Friedman and Johnson 2000). Trials exceeding ± 100 μV in
both EEG and EOG within 0–2000ms time window were rejected
offline and not used in the ERP and in the time-frequency (TF)
analysis detailed below. The average number of trials included
in the analysis in Experiment 1 was 111.78 (range: 34–142) for
Early encoding and 107.18 (range: 29–137) for the Late encoding
period. In Experiment 2, the average number of cue trials
included in the analysis was 124.71 (range: 26–144) for Early
encoding and 124.29 (range: 33–143) for Late encoding, and 29.79
(range: 25–32) for fillers in the Early encoding and 29.51 (range:
16–32) in the Late encoding period. LPC amplitude values were

analyzed within 600–2000ms on the basis of visual inspection
and previous reports (Friedman and Johnson 2000) after cue
presentation during the early and late learning phases at FCz,
Cz, and Pz.

TF Analysis

TF was performed per trial using seven-cycle complex Morlet
wavelets in 4-s epochs (2 s before cue onset through 2 s after).
Changes in time-varying energy (square of the convolution
between wavelet and signal) in the studied frequencies were
computed for each trial and averaged for each subject. Before
performing an overall average, power activity was computed
with respect to the baseline of each participant. One participant
was removed from the time-frequency analysis in Experiment
1 because she presented power increases greater than 3 SD in
all the studied frequencies. Theta power analysis was per-
formed on averaged data from a time window identified based
on 2 criteria. First, given that our primary hypothesis was that
theta should be enhanced in late learning trials, theta analysis
would be around a time point that showed such increment
when late and early trials were averaged across subjects.
Second, theta effects should be consistent for at least 200ms
(thus capturing at least one full theta cycle in the data).
Furthermore, to confirm that the window selected in the theta
analysis did not capitalize on chance, a nonparametric two-
stage randomization process was used, which also allowed us
to account for multiple testing (Blair and Karniski 1993). At the
first level, 0–2000ms theta power data was binned (average of
20ms data points) and a bin-to-bin paired t-test (thresholded at
P < 0.05, one tail) was used to assess which and how many con-
secutive time bins (minimum of 2 bins) exhibited significantly
higher theta power between conditions throughout the epoch.
To correct for multiple comparisons that may potentially result
in false positive results, we employed a nonparametric statis-
tical method based on cluster-level randomization testing to
control the family-wise error rate. Each permutation run
shuffled the assignment of the conditions randomly for each
subject. Statistical values larger than a threshold (P = 0.05) were
selected and clustered into connected sets on the basis of tem-
poral adjacency (Groppe et al. 2011). The observed cluster-level
statistics were calculated based on the tmax permutation
approach that sets a t threshold (with an alpha level of 5%),
extracted from randomized testing after data have been per-
muted 5000 times.

Learning, LPC, and Theta Curves

The learning curve was computed by calculating the percentage
of correct choices in sliding trial windows of 20 trials shifted in
steps of one trial. The LPC and theta curve were obtained by
computing the mean LPC over all 20 trials in each trial window
used to compute the learning curve. LPC curve was calculated
from ERP amplitude data. The 4–6 Hz theta power values used
for this analysis were not baseline corrected, thus avoiding
variation throughout theta power values over the task being
driven by learning-derived baseline differences at the theta
band (Guderian et al. 2009). Theta power was then averaged
over the selected time window defined in the previous analysis,
and the resulting values were z-transformed across all trials.
To match EEG data to behavioral response at the trial level indi-
vidually, all trials were included in this analysis but any partici-
pant showing a normalized LPC amplitude or theta power in at
least 1 data point exceeding 3 SD from the mean was excluded.
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Three participants from Experiment 1 and 3 from Experiment 2
were not included in this analysis based on the aforementioned
criteria.

Results
Experiment 1

Behavioral Performance
All participants successfully learned and retained the trained
associations (Fig. 1C). During encoding, participants’ ability to
choose the association pair correctly increased greatly during
the early encoding phase, and this was reflected in their ability
to correctly respond to the first test for trained pairs
(mean = 77.76%; SD = 10.55%). Participants further improved
during the late encoding period, which was reflected as an
incremented accuracy on the final test (mean = 90.84%;
SD = 8.13%) (Fig. 1C), thereby indicating that participants’ learning
of paired association continued throughout the task. In contrast,
participants’ showed a poorer ability to generalize during the
task, although, they still showed improvement over the course of
the task, an effect that was more pronounced during the late
learning period (early test: mean = 52.30% SD = 15.52%; late test:
mean = 65.81%; SD = 17.54%). A repeated measures ANOVA,
including time (early and late test) and type of learning (inferred
and trained associations) as the within-participant factors, con-
firmed that participant accuracy improved between initial and
late tests (main effect of time: F(1,36) = 66.92, P < 0.001) and
that the accuracy was generally higher for the paired trained
associations than for novel conjunction pairs (F(1, 36) = 134.61,
P < 0.001). Participant accuracy on the late test for trained pairs
(t(36) = 30.5, P < 0.001) and generalization (t(36) = 5.5, P < 0.001)
resulted in significantly above-chance scores. Interestingly,
as in similar experimental designs (Shohamy and Wagner 2008;
Zeithamova and Preston 2010), large individual differences
in generalization performance were observed in the task
(mean = 65.81%, STD = 17.5%), indicating that, on average, par-
ticipants were able to exploit the overlap in encountered asso-
ciations but that they differed in their ability to do so.

Neural Dynamics During the Course of Encoding
As each generalization trial relates to a series of encoding
phase events, we examined whether the increase in magnitude
of activation from early to late encoding correlated with subse-
quent accuracy on the generalization probes (a similar
approach was used by Shohamy and Wagner 2008).

Thus, because participants’ memory accuracy effectively
increased during the task, we reasoned that ERPs and neural
oscillations supporting memory formation should be reflected
when EEG data from the late encoding was compared with EEG
data from the early encoding period. More importantly, we
hypothesized that ERP differences would be observable mainly
as LPC and that differences in neural oscillation would be
centered at the theta band. In line with these predictions, the
ERP analysis showed a clear amplitude increase of LPC
during the late encoding period (Fig. 2A) (repeated measures
ANOVA, F(1, 36) = 36.3, P < 0.001). LPC increased during encoding,
initiated at around 600ms and sustained during a long period
lasting through the encoding interval (~2000ms). In addition,
and confirming our hypothesis, differences in spectral power
between the early and late encoding period were centered at the
theta band (4–6Hz) over fronto-central scalp regions which
appeared at around 1000–1300ms after cue onset (Fig. 2B).
A cluster-based permutation test confirmed such window of

analysis represented a good estimate of the theta power differences
between these conditions (see Fig. 2B). However, despite being
clearly observable, the theta power increase between encoding
periods did not reach statistical significance (repeated mea-
sures ANOVA, F < 1).

LPC and Theta Rhythm at the Individual Level
Having found significant effects for LPC but not for theta
responses at the group level led us to question whether these
neural markers might, in fact, parallel the behavioral observa-
tion that despite participants’ being generally able to perform
accurately when tested for trained pairs (N = 35 out of 37,
Binomial test), not all of them were able to reach above-chance
performance on the final generalization test (N = 14 out of 37,
binomial test). To test this hypothesis, we split the participants
into 2 groups. We selected the first and last quartile of the sam-
ple based on the accuracy in the final test. Importantly, as the
aim of this testing was to look for an effect associated solely
with the generalization process, we formed the subgroups with
the restriction that, between them, there were no differences in
their accuracy for trained associations. This yielded “good”
(n = 11) and “poor” (n = 11) generalizers (Fig. 2C), who, despite
being similar in their memory accuracy for trained associations
(good, 94% ± 7% and poor, 93% ± 4%; time × group,
F(1,20) = 1.173, P = 0.292; group comparison at early: t(20) = 0.28,
P = 0.78 and at late encoding: t(20) = 1.43, P = 0.16), markedly
differed in their ability to generalize on the final test (good
81% ± 8% and bad 51% ± 9%; time × group, F(1,20) = 9.51,
P < 0.01). Post-hoc 2 sample Student t-test showed that the 2
groups differed only in the generalization performance in the
late (t(20) = 8.05, P < 0.001) but not the early test (t(20) = −0.655,
P = 0.52), thereby confirming that generalization performance
difference was driven by the encoding process during the task
and could not be attributable to a difference in accuracy already
appearing at the very beginning of the encoding stage.

Having homogenized participants’ subsamples by their abil-
ity in trained pairs but differing in their generalization perform-
ance, we next examined whether theta activity, but not LPC,
differed between them. Critically in this test then, theta
power differences between groups should be seen only on late
encoding trials, providing strong support for the notion that
theta differences may specifically underlie the formation of
across-episode memories. Indeed, ANOVA revealed a time ×
group interaction for theta (F(1,20) = 8.90, P < 0.001) but not
for LPC (F(1,20) = 1.156, P = 0.29), which showed no significant
effect at the group level (F(1,20) = 0.72, P = 0.79) (Fig. 2C and D).
Follow-up t-test comparisons confirmed that theta differences
between groups occurred on late (t(19) = 2.37, P < 0.05) but not
early encoding trials (t(19) = −0.77, P = 0.45), thereby confirming
that individual differences in generalization were specifically
linked to variations in neural oscillations at theta range during
encoding.

Differential LPC and Theta Rhythm Evolvement
Next, we sought to examine whether LPC and theta responses
emerged differently throughout the task. We hypothesized that
in the event that the 2 neural mechanisms were functionally
dissociated in integrative encoding, they should show different
patterns of evolvement over the course of the task. Hence, the
formation of across-episode memory representations required
the existence of discrete yet overlapping memories being
retrieved individually, so that relational inferences could be gen-
erated without compromising the nature of the existing memory
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traces (Cohen and Eichenbaum 1993; O’Reilly and Rudy 2001).
To address this question, we first sought to investigate the tem-
poral evolvement of LPC and theta by calculating the correct
percentage and standardized LPC amplitude and theta power
over sliding windows of 20 trials shifted in steps of 1 trial (Tort
et al. 2009). This analysis revealed a different pattern of task-
related evolvement of LPC and theta (Fig. 3A). Thus, LPC
increased gradually throughout the encoding period while
theta power remained unchanged during the first half of the
encoding period after which it suddenly increased in magni-
tude, and then increased until the end of the task. To test this
statistically, we subdivided the trials into 4 small blocks, and
computed the increase/decrease, which can be quantified with
the first temporal derivative, of the last half of the trials com-
pared with the first half of trials, thereby providing a measure
of degree of discontinuity or change within each block. The
results of this analysis would be indicative of the type of grow-
ing function underlying the emergence of LPC and theta power
over the task. Figure 3B shows the different changes in the
activity in the different blocks for both LPC and theta: while

LPC presented positive values in all the blocks, theta activity
showed an increase in activity only at the third block.
Corroborating this differential change, a repeated measures
ANOVA, with activity (LPC or theta) and blocks as within factors,
showed significant interaction (F(3,96) = 2.8, P < 0.05) and a signifi-
cant main effect (F(1,32) = 5.1, P < 0.05). The analysis of each compo-
nent revealed that, while LPC amplitude did not show significant
differences among blocks (block effect, F(3,96) = 0.96, P > 0.4), it
did in the case of theta activity (block effect, F(3,96) = 2.7,
P = 0.05), with the third block being significantly higher than
others (first block, t(32) = 2.83, P < 0.01; second block t(32) = 2.45,
P < 0.05; fourth block t(32) = 1.8, P = 0.08). Thus, these findings
reveal that constant LPC’ growth was maximal at the beginning
of the task. In contrast, theta power increased only after half of
the task was accomplished.

The differential pattern that evolved in LPC and theta corro-
borated our initial prediction that the 2 neural responses would
emerge differentially over the course of the task. However, this
raised the important question as to what extent LPC but not
theta oscillations could reliably index the course of

Figure 2. Neural events at cue appearance during the encoding period. (A) Group-averaged ERP waveforms at Cz electrode (circled in black) for early and late learning

trials. An LPC emerged when comparing late versus early encoding trials. (B) Group-averaged changes in spectral power for early and late trials at FCz electrode

(circled in black). A power increase in the theta band was observed when late learning trials were compared with early learning trials. A cluster-based permutation

test implemented throughout the entire encoding time window (0–2000ms) identified a significant theta (4–6 Hz) cluster (P < 0.05; corrected for multiple comparisons)

within the selected time window of analysis. (C) We split the participants into two groups. Participants were selected according to the first and last quartile of the

sample based on their generalization performance in the final test. (D) Good and Poor generalizers’ ERP averaged for early and late encoding trials. (E) Good and Poor

generalizers’ theta power changes for early and late encoding trials. *P < 0.05 and n.s., P > 0.05. Error bars in (C–E) indicate standard error of the mean.
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participants’ ability to retrieve individual memories independ-
ently of their ability to generalize. Indeed, this prediction
remained unanswered in previous analyzes fromwhich only theta
changed according to the participants’ ability to generalize. To
explore this possibility we performed a regression analysis at the
individual level using LPC as dependent variable and behavioral
choice accuracy as independent measure. If LPC scaled accord-
ing to participants’ behavioral memory accuracy over encoding,
then the slope of this relationship would be positive and differ-
ent from 0. Indeed, this was the case for the LPC (t(32) = 6.09,
P < 0.001) (see Fig. 3C for regression values over sensors for the
distribution across participants). Note that the regression was
not significant when the same analysis was performed as a con-
trol on ERP data from the same electrode but on an earlier time
window (i.e., 200–500ms; t(32) < 1), thus lending weight to the
argument against the idea that LPC amplitude in this analysis
reflected a large effect of trial/time. Importantly, regression
analysis with theta and behavioral accuracy did not reach
significance when tested against 0 (i.e., reflecting no statistical
linear relation between variables) (t(32) = 0.84, P > 0.4) and was
significantly lower than regression values obtained between LPC
and choice accuracy (t(32) = 3.94, P < 0.001). These results were
similar for both good and bad generalizers, so that regression
analysis between LPC, but not theta, and choice accuracy were
significantly different from 0 for both groups (LPC and behavior
accuracy for good generalizers t(10) = 5.1, P < 0.001; for bad gen-
eralizers t(8) = 3.44, P < 0.01; theta and behavior accuracy for
both groups t < 1) and the regression did not differ between
groups at the LPC level (t(18) = 1.78, P = 0.09). Altogether, these
results provide support for the notion that the progress of

associative memory formation is associated with neural
responses tightly linked to amplitude variations at the LPC level,
that this link can be found at the individual level and extends to
the relationship between associative memory performance and
LPC, and that the variation across individuals cannot be
explained by their ability to generalize.

Experiment 2

In Experiment 2, we included several filler items throughout the
encoding period to examine the extent to which LPC and theta
effects seen in the previous experiment might reflect other cogni-
tive processes (e.g., attention) or might be related to general con-
founding factors (e.g., fatigue or practice) due to the task structure
and analysis (i.e., early vs. late encoding). If this was the case, we
would expect LPC and theta response to fillers to be similar to
those induced by cue trials. To test against this possibility we
compared LPC and theta response changes between early and
late encoding periods and between these 2 trial types.

Behavioral Performance
Despite having included filler trials throughout encoding,
behavioral performance in Experiment 2 fully replicated the
effects seen in Experiment 1. All participants successfully
learned and retained the trained associations. Participants’
ability to correctly respond to the first test for trained pairs was
again high (mean = 75.08%, SD = 11.02%) and increased further
on the final test (mean = 86.78%, SD = 11.59%). As in
Experiment 1, participants’ showed a poorer ability to general-
ize during the task, although they still showed improvement

Figure 3. LPC and theta rhythm during learning. (A) (top) Behavioral learning curve computed by using a sliding window of 20 trials (averaged proportion of correct

responses). Thin lines represent the group-averaged value whereas shaded colors indicate standard error of the mean. (middle) Group LPC-associated learning curve.

Note that the behavioral and LPC curves are modulated almost exactly on time. (below) Group-averaged theta power-associated learning curve. Note that, in contrast

to LPC, theta emerged abruptly and after ~half the encoding was accomplished by the participants. (B) First derivative results calculated from four different blocks of

trials throughout the task. The data showed the extent to which the second and first half of the trials for each block differed (i.e., first derivative). (C) Histogram of the

participants’ regression coefficients separately for LPC and theta. P values resulted from testing (Student t-test) whether the group regression estimates differed stat-

istically from 0. Also added in each scalp distribution of the regression estimates averaged across participants resulting from linear regression computation between

LPC and theta oscillations with behavioral responses during learning. Black circles indicate the electrode analyzed.
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over the course of the task (early test: mean = 53.03%, SD = 13.42%;
late test: mean = 62.37%, SD = 15.37%). A repeated-measure
ANOVA confirmed that participants’ accuracy improved between
initial and late tests (main effect of time: F(1,32) = 28.69,
P < 0.001) and that the accuracy was overall higher for the
trained associations than for novel conjunction pairs (F(1,32) = 92.43,
P < 0.001). Participants’ accuracy on the late test for trained pairs
(t(32) = 17.96, P < 0.001) and generalization (t(32) = 4.55, P < 0.001)
resulted in a significantly above-chance level.

LPC and Theta Effects Do Not Reflect Task Structure Demands
The ERP analysis at Pz electrode (where the effects were shown
to be maximal in this experiment; see also Fig. 2A) revealed
that, although LPC amplitude was greater in response to cues
than to fillers (main effect of cue: F(1,32) = 13.50, P < 0.01), it
increased over the course of encoding to both filler and cues
(main effect of time: F(1,32) = 34.15, P < 0.001), and the ampli-
tude increment was more pronounced in late cue trials
(ANOVA interaction time × trial type: F(1,32) = 4.18, P < 0.05)
(Fig. 4A). Follow-up paired t-test showed that LPC differences
between cue and filler trial types were more pronounced in the late
encoding (t(32) = 2.66, P < 0.05); early encoding period (t(32) < 1). In
addition, and replicating the results from Experiment 1, a clear
power increase centered at theta (4–6Hz) was observed between
early and late encoding periods in cue trials. Importantly, this theta
increase was not evident between early and late period in filler
trials. The early versus late contrast between cues and filler trials
showed that theta power increase (4–6Hz) was consistent across
subjects within 1000–1500ms (Fig. 4B). Notably, the cluster-based
permutation test corroborated that such window of analysis repre-
sented a good estimate of the theta power differences between
these conditions (see Fig. 4B). This effect was confirmed statistically
with a repeated measures ANOVA that showed a significant inter-
action effect (time × trial type: F(1,32) = 5.53; P < 0.05). A trend
toward significance was revealed when comparing theta responses
between cues and fillers in the late period (t(32) = 1.97, P = 0.06)

while theta did not differ between them at early stages of
learning (t(32) = −1.41, P > 0.1).

Finally, early versus late comparison for filler trials also helped
in clarifying the extent to which activity in other frequency bands
played a role in memory generalization processes during encoding.
For instance, Figure 4B shows a prominent alpha decrease in late
encoding period in filler trials that is not that apparent in early
versus late comparison in cue trials. The alpha power effect in
filler trials was confirmed statistically by a significant interaction
stimulus type × time interaction (including alpha power aver-
aged over 300–2000ms stimulus onset at FCz; F(1,32) = 4.34,
P < 0.05). Post-hoc paired t-test corroborated that alpha decrease
was significant for fillers (early vs. late; t(32) = 2.62, P < 0.05)
and that the power change was at the trend level for cue trials
(t(32) = 1.79, P = 0.08). For completeness, we compared alpha
power changes in Experiment 1 (early vs. late) and found that
the decrease was statistically significant (t(36) = 2.64, P < 0.05).
Thus, although alpha power changes occurred throughout
encoding in Experiments 1 and 2, data from Experiment 2,
which showed that the alpha decrease was mostly observed in
response to filler trials, suggested that differences in alpha power
between early and late trials may reflect general differences during
task performance that cannot be attributed to processes of
memory generalization (e.g., attention (Klimesch et al. 2007)).

LPC and Theta Rhythm at the Individual Level
Findings in experiment 1 revealed that the specificity of the
theta activity to memory generalization was further supported
by splitting the participant sample into good and poor generali-
zers. We asked, then, whether similar results were observed in
Experiment 2 when extended to filler trials too. Thus, as in
Experiment 1, participants were split into a group of “good”
(n = 10) and a group of “poor” (n = 10) generalizers who, despite
showing similar memory accuracy for trained associations
(good, 88% ± 8% and poor, 89% ± 10%; time × group, F(1,18) = 0.35,
P = 0.56; group comparison at early: t(18) = −0.49, P = 0.62, and at
late encoding: t(18) = 0.64, P = 0.7), markedly differed in their ability

Figure 4. LPC and theta rhythm in Experiment 2. (A) Group-averaged ERP waveforms at Pz electrode (circled in black) for early and late learning cue and filler trials. A

LPC emerged when comparing late versus early encoding trials but amplitude was much higher in the cue trials. (B) Group-averaged changes in spectral power at FCz

electrode (circled in black) for early and late cue and filler trials. A power increase in the theta band was observed when late learning trials were compared with early

learning trials only in the cue trials. Theta power induced by cues and fillers differed only at late stages of encoding. A cluster-based permutation test implemented

throughout the entire encoding time window (0–2000ms) identified a significant theta (4–6Hz) cluster (P < 0.05; corrected for multiple comparisons) within the

selected time window of analysis. *P < 0.05 and n.s., P > 0.05. Error bars indicate standard error of the mean.
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to generalize on the final test (good 76% ± 7% and poor 57% ± 10%;
time × group, F(1,18) = 4.47, P < 0.05). Post-hoc 2 sample
Student t-test confirmed the 2 groups differed only in the
generalization performance in the late (t(18) = 3.99, P < 0.001)
but not the early test (t(18) = 0.97, P = 0.34).

Having homogenized participants’ subsamples in Experiment 2
by their ability in trained pairs but differing in their generalization
performance, we next examined whether theta activity, but not
LPC, differed between them specifically in cue but not in filler
trials. To test this possibility statistically, we ran separate
repeated-measure ANOVAs for LPC and theta measures. This
analysis confirmed that LPC increased during the task for the
2 groups in a similar manner (main effect of time: F(1,18) = 36.01,
P < 0.001; interaction time × group: F(1,18) = 0.01, P > 0.9), and
that LPC amplitude was greater for cues than for filler trials in
both groups (main effect of cue: F(1,18) = 10.19, P < 0.01; inter-
action cue × group: F(1,18) = 0.28, P > 0.5) (Fig. 4C).

We next assessed whether the theta increase between early
and late learning phases was specific to cue trials in the good
but not the poor generalizers. The ANOVA on theta activity
revealed a significant type × time interaction (F(1,18) = 11.48,
P < 0.01), a time × group interaction (F(1,18) = 4.53, P < 0.05),
although the interaction type × time × group failed achieve sig-
nificance (P > 0.1). To try to further elucidate the source of such

differences, separate ANOVAs for each group were performed
and their results confirmed the 2 groups showed a significant
cue × time interaction effect (Good generalizers: F(1,9) = 5.62,
P < 0.05; Poor generalizers: F(1,9) = 6.04, P < 0.05), although theta
increments to cue trials seemed to be specific to good generali-
zers only (see Fig. 5A). We assessed this by implementing
follow-up paired t-test analysis which confirmed that good, but
not poor, generalizers showed a significant increase in theta
activity in cue trials between early and late learning trials
(good: t(9) = −5.50, P < 0.001; poor: t(9) = −0.27, P > 0.2). Theta
activity did not differ between early and late phases for filler
trials in good generalizers (t(9) = 0.67, P > 0.5), although a trend
towards significance was found in poor generalizers (t(9) = 2.19,
P = 0.056). All in all, these results are consistent with findings
in Experiment 1 that theta increase to cues in the late learning
phase is specifically associated with individuals who performed
well on the generalization test.

LPC, but Not Theta Rhythm, Fits to Individual Memory Performance
at the Trial Level
Finally, we examined whether LPC and theta responses to cues
throughout the task fitted to individual memory performance
at the trial level in Experiment 2. Thus, as in Experiment 1, we

Figure 5. LPC and theta rhythm for the “Good” and “Poor” generalization participants and group learning-associated curves in Experiment 2. (A) Good and Poor gener-

alizers’ ERP averaged and theta power for early and late encoding trials. (B) (top) Behavioral learning curve and (middle) Group LPC-associated learning and (below)

Group-averaged theta power-associated learning curve. Thin lines represent the group averaged value whereas shaded colors indicate standard error of the mean.

Curves are calculated as in Figure 3A. Histogram of the participants’ regression coefficients separately for LPC and theta are also plotted. P values resulted from test-

ing (Student t-test) whether the group regression estimates differed statistically from 0. *P < 0.05 and n.s., P > 0.05. Error bars in (A) indicate standard error of the

mean.
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first calculated the correct percentage and standardized LPC
amplitude and theta power over sliding windows of 20 trials
shifted in steps of 1 trial. The results of this analysis are
displayed in Figure 5B. We then performed a regression analysis
at the individual level using LPC as dependent variable and
behavioral choice accuracy as independent measure to assess,
as in Experiment 1, whether LPC scaled according to partici-
pants’ behavioral memory accuracy over encoding. Indeed, this
was the case for the LPC (t(29) = 7.80, P < 0.001) (see Fig. 5B) but
not for theta (t(29) = 0.41, P > 0.6) which showed significantly
lower regression values than with LPC (t(29) = 6.06, P < 0.001).
Altogether, these results replicate findings from Experiment 1
and provide support for the notion that the progress of associa-
tive memory formation is associated with neural responses
linked to amplitude variations at the LPC level.

Discussion
In the current EEG study, we show that integrative encoding—
the ability to form individual and across memory representa-
tions during online encoding—is supported by 2 distinct neuro-
physiological responses. A slow ERP component increased
gradually during encoding and fit to a trial level memory measure
for individual episodes. Neural oscillatory responses in the theta
range (4–6Hz) emerged later during learning and predicted partici-
pants’ generalization performance in a subsequent test. These
results suggest that integrative encoding requires the recruitment of
2 separate neural mechanisms that, despite their co-occurrence in
time, differ in underlying neural dynamics, reflect different brain
learning rates, and are supportive of the formation of opposed
memory representations, individual versus across-event episodes.

A core property of integrative encoding is that by recalling
past events during new experiences, connections can be created
between newly formed and existing memories (Shohamy and
Wagner 2008). Thus, integration of new information into an
existing memory depends on elemental encoding of the initial
memory such that it can be reactivated when the overlapping
element is encountered again in the subsequent episode, with-
out causing interference with the stored individual elements
(Norman et al. 2005). Therefore, while it is important to prevent
interference during encoding, it is also critical to have an
ongoing ability to access discrete representations for retrieval
given that this, in turn, can lead to encoding of the distinct dis-
crete events into an integrated representation. Our findings that
task-related LPC amplitude varied according to participants’ per-
formance at the trial level suggests that this ERP reflects, at least
partially, the output of retrieval operations. Interestingly, an
LPC-like component has been shown to indicate the success of
memory retrieval operations (Düzel et al. 1997; Rugg and Curran
2007). These studies confirmed the appearance of LPC in
retrieval tasks to be hippocampus-dependent (Düzel et al. 2001)
and to reflect the reinstatement of “content-specific” memory
information (Johnson et al. 2008; Jafarpour et al. 2014). Here, we
propose that, during integrative encoding, the access of discrete
memory episodes and their reinstatement, allowing such mem-
ory to be integrated into a distinct yet overlapping memory
input, are reflected as amplitude modulations in the LPC.

According to theoretical proposals, encoding of new infor-
mation without interference from previously encoded informa-
tion requires transitions between encoding and retrieval states
(Hasselmo et al. 2002), which may be enhanced by modulatory
changes in synaptic transmission during the theta cycle in the
hippocampus (Wyble et al. 2000; Molyneaux and Hasselmo
2002). Our findings that EEG theta activity during encoding only

explained the participants’ ability to generalize support this
view. However, and because theta activity in our study resulted
from scalp EEG recordings, it is likely that theta modulations
also engage, at least partially, the activity of neocortical regions.

Indeed, animal (Jones and Wilson 2005; Siapas et al. 2005;
Benchenane et al. 2010) and human (Guitart-Masip et al. 2013;
Fuentemilla et al. 2014) studies show converging evidence that
theta oscillations are a physiological conduit through which
the coordinated activity of hippocampal and neocortical
regions takes place. The resulting dialog would drive plastic
changes in short- and long-range synaptic connections and
contribute to creating widespread integrated representations of
items and experiences, selecting and retaining the information
that is most valuable for adaptive behavior (Benchenane et al.
2010). This is especially important for inferential learning,
during which the extraction of new knowledge extends beyond
direct experience to anticipate future inferential judgments about
the relationships between experiences (Cohen and Eichenbaum
1993; Eichenbaum 1999).

In fact, recent studies have led to a proposal of how the
hippocampus forms and replays memories and how the pre-
frontal cortex engages representations of the meaningful con-
texts in which related memories occur, thereby promoting
generalization (Preston and Eichenbaum 2013). This model
assumes that the hippocampus is essential for forming
cohesive memories of individual events within the context in
which they occurred (Davachi 2006; Diana et al. 2007). Critically,
a part of the hippocampus sends outputs to the medial prefrontal
cortex (mPFC) which accumulates information about the context
of interrelated memories. In turn, the mPFC sends back projec-
tions to the hippocampus thereby biasing the retrieval of event
information (Xu and Sudhof 2013). Given the strong preference of
the mPFC and the hippocampus to functionally interact during
learning via theta synchronization (Siapas et al. 2005), it is reason-
able to assume that the emergence of theta activity may support
the ability to create contextual or abstract representations that
link related memories and then use these contextual representa-
tions to retrieve the memories that are relevant within a given
context.

Although theta oscillations in our data may reflect the
effective mPFC-hippocampal interaction to support the integration
of overlapping memories, the fMRI approach used by Shohamy
and Wagner (2008) demonstrates that in fact our ability to general-
ize is supported by the dynamic interaction between midbrain and
hippocampal regions. Based on the suggestion that a functional
loop between the midbrain (VTA) and the hippocampus serves to
enhance episodic memory for novel events (Lisman and Grace
2005), the authors argued that whenever the memory reactivation
features of an event do not coincide with a current input, the mis-
match signal originating in the hippocampus upregulates midbrain
dopaminergic feedback to the hippocampus. The consequence of
this is to increase the probability of encoding the present and prior
event features into an integrated representation. We propose that
this possibility is not incompatible with the suggestion that theta
activity found in the current study engages the recruitment of
mPFC-hippocampal network. Thus, a recent study in rats showed
that neuronal activity in the mPFC, the hippocampus, and the mid-
brain ventral tegmental area (VTA) during memory processes is
coordinated by a 4Hz oscillation (Fujisawa and Buzsáki 2013). This
suggests that during integrative encoding, the triple interactive
activity of mPFC-VTA-hippocampus would mediate the need to
hold simultaneously different but overlapping memory representa-
tions and the recruitment of the mesolimbic dopaminergic system
necessary for establishing the formation of relational memory
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representations whenever a mismatch between current and previ-
ous memory elements is encountered.

In summary, the present data demonstrate the existence
of two different EEG-based neural mechanisms that track the
ability to carry out integrative encoding. The current findings
corroborate previous investigations showing that memories for
distinct experiences are rapidly integrated during encoding
(Shohamy and Wagner 2008) and extend them by providing
the time course and the neural dynamics that account for this
process during learning. Furthermore, the opportunity to inves-
tigate these two neural mechanisms with scalp EEG recordings
represents a valuable contribution to clinical environments.
Thus, the simple placing of a few EEG sensors, even at the
ambulatory level, would allow a fine-grained exploration in
neurological patients of basic neural mechanisms that are very
relevant in terms of the adaptive nature of memory, whereby
memory representations are constructed to anticipate, and suc-
cessfully negotiate, future judgments.
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