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Brain functional connectivity in lung cancer population:
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Abstract The present study aimed to explore the functional
connectivity differences in Resting State Networks (RSNs)
induced by cancer and chemotherapy in Lung Cancer (LC)
patients using an Independent Component Analysis (ICA).
Three matched groups of 15 LC patients following
Chemotherapy (C+), 15 LC patients before Chemotherapy
(C-) and 15 Healthy Controls (HC) were included. Analysis
was performed using ICA and a multivariate pattern anal-
ysis (MVPA) to classify groups based on profiles of func-
tional connectivity. We found significant differences in four
of the RSN identified: Default Mode Network (DMN),
Predominantly Left and Right Anterior Temporal
Network, and Cerebellum Network. Whereas DMN showed
decreased connectivity, the other RSNs exhibited increased
connectivity in both LC groups compared to HC and in C+
in comparison to C-. MVPA discriminated significantly and

accurately between all groups. Our study showed that
disrupted functional connectivity associated with cancer
and chemotherapy-induced cognitive deficits is not only
related to DMN decreased connectivity abnormalities but
also to an increased connectivity of other RSNs, suggesting
a potential compensatory mechanism.

Keywords Resting-state functionalmagnetic resonance
imaging . Chemotherapy . Lung cancer . Default mode
network . Functional connectivity

Introduction

Chemotherapy-induced cognitive impairment or ‘chemobrain’ is
a well-recognized clinical syndrome, consisting of subtle tomod-
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erate cognitive changes across various domains (Jim et al. 2012).
Although acute cognitive changes during chemotherapy are
common (Ahles et al. 2002), long-term cognitive changes post-
treatment seem to persist only in a subgroup (17–34%) of cancer
survivors (Ahles and Saykin 2007). In addition, cogni-
tive deficits have also been described in cancer patients
prior to chemotherapy (Ahles and Saykin 2002). In re-
cent years, several studies using neuroimaging tech-
niques, concretely magnetic resonance imaging (MRI)
and positron emission tomography, have reported struc-
tural and functional connectivity brain changes associat-
ed with cancer and chemotherapy (Kesler 2014; Simo
et al. 2013).

Resting-state functional magnetic resonance imaging (RS-
fMRI) is a non-invasive method for examining the intrinsic
topology of synchronous large-scale brain networks, occur-
ring when a subject is not performing an explicit task (Lee
et al. 2013;Wang et al. 2010). Thus, RS-fMRI is well-suited to
assess the intrinsic connections that are believed to support
cognitive functioning (Church et al. 2009) and has been re-
peatedly used to understand the nature of functional connec-
tivity across both healthy subjects and several clinical popu-
lations (i.e., Alzheimer disease (Sanz-Arigita et al. 2010),
schizophrenia (Lynall et al. 2010). However, to date
only a handful of studies have used RS-fMRI to study
the neurobiological mechanisms underlying the cognitive
impairment associated with cancer and chemotherapy
(Bruno et al. 2012; Dumas et al. 2013; Kesler 2014;
Piccirillo et al. 2015).

Early studies, (Dumas et al. 2013; LaViolette et al. 2009),
which used a seed-based functional connectivity analysis in
breast cancer patients following chemotherapy, showed a dec-
rement in the connectivity of the posterior cingulate cortex
and the intraparietal sulcus. Importantly, the posterior cingu-
late cortex is a central node to the Default Mode Network
(DMN). DMN is one of the most observed resting state net-
works (RSNs) that is usually engaged when subjects are not
focused on cognitive processes coming from the external en-
vironment or when they are processing internal focused tasks.
DMN is localized in the posterior cingulate cortex, precuneus,
medial temporal, medial prefrontal and lateral parietal cortex
(Buckner et al. 2008; Spreng and Schacter 2012). Another
study, which used graph theoretical analysis (Bruno et al.
2012), displayed altered global brain network organization
consisting in a significant decrement of global clustering and
a disruption of the regional DMN network characteristics in
frontal, striatal and temporal areas in breast cancer patients. In
addition, Kesler and colleagues (Kesler et al. 2013), used mul-
tivariate pattern analysis (MVPA) to classify profiles of DMN
functional connectivity. Results showed disrupted DMN con-
nectivity in those patients treated with chemotherapy, as well
as an accurate classification performance using the connectiv-
ity pattern as the input of the classifier, except for the

classification between cancer patients before chemotherapy
and healthy subjects. Thus, as shown by the studies described
above, there are several methods to analyze RS-fMRI data
(Lee et al. 2013).

There is, however, another extensively used approach to
assess functional connectivity called Independent
Component Analysis (ICA). ICA is a multivariate statistical
technique that estimates functionally related networks by
maximization of independence among components (Lee
et al. 2013). ICA has become a successful data-driven and
model free analysis tool (Abou-Elseoud et al. 2010; De Luca
et al. 2006). These characteristics, in contrast to previously
mentioned methods, are important because a priori specifica-
tion of a seed region or region of interest (ROI) to perform
ICA analyses is not needed. It estimates functional connectiv-
ity of spatially distributed brain regions, from the blood-
oxygen-level dependent response fluctuations of resting or
active brain (Smith et al. 2009). Interestingly ICA has only
been used to assess connectivity brain changes in cancer pop-
ulation in a recent study (Hampson et al. 2015) focused on
cancer-related fatigue.

To date, most investigations on treatment and cancer-
related cognitive changes have focused on breast cancer pa-
tients. Cancer and chemotherapy-related cognitive research
focused on lung cancer population has been scarce. Early
studies found that non-small cell lung cancer (NSCLC) pa-
tients exhibited transient cognitive deficits soon after chemo-
therapy treatment (Kaasa et al. 1988a; b). Other studies, fo-
cusing exclusively on small-cell lung cancer (SCLC) patients,
found that nearly 60–90% of patients were cognitively im-
paired 1 to 5 months after concluding chemotherapy
(Grosshans et al. 2008; Komaki et al. 1995). Additionally, to
the best of our knowledge, only three studies have examined
the structural and functional neural changes following chemo-
therapy treatment in lung cancer population (Horky et al.
2014; Simo et al. 2015; Simo et al. 2016a). Two of these
previous studies, conducted in the same cohort of lung cancer
patients examined in the present study, showed gray and white
matter structural damage mostly focused in bilateral temporal
regions of SCLC (Simo et al. 2015; Simo et al. 2016a). Thus,
the study of the toxic effects of cancer and chemotherapy on
cognition in this population remains challenging and under-
represented in the literature.

The present study aimed to investigate the cancer- and
chemotherapy-related differences in RS-fMRI using an ICA
analysis. Based on previous structural neuroimaging findings,
we hypothesized that both DMN but also temporal networks
will be functionally disrupted in the lung cancer population.
We explored differences in functional connectivity of brain
networks between three gender-, age- and education-
matched groups: SCLC patients one month following chemo-
therapy (C+), NSCLC patients prior to chemotherapy (C-),
and a healthy control (HC) group.
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Methods

Patients

Patients were prospectively recruited between December
2010 and December 2013 from the Lung Cancer Unit-ICO
L’Hospitalet (n = 26) and the Radiation Oncology
Department-ICO Badalona-Hospital Germans Trias i Pujol
(n = 4). Patients were eligible if they had an histologically
proven diagnosis of either NSCLC or SCLC, were between
the ages of 40 and 70 years, had no severe concomitant sys-
temic illness or psychiatric disorder with a negative impact on
cognitive function, or had no contraindication to undergo
MRI. Patients were excluded if they had evidence of brain
metastases on MRI. This cross-sectional analysis is a part of
a longitudinal study designed to examine the effects of pro-
phylactic cranial irradiation (PCI) in SCLC patients (Simo
et al. 2015; Simo et al. 2016b). C+ (n = 15) who were eligible
to receive PCI and were anti-HU negative were enrolled one
month following completion of chemotherapy and prior to
PCI. C- (n = 15) who were eligible to receive a platinum-
based chemotherapy were enrolled in the study before the
initiation of chemotherapy. The NSCLC group was selected
as control for the evaluation of chemotherapy effects on SCLC
patients because NSCLC patients presented common organ
location, had similar demographic and clinical features, and
underwent the same platinum-based chemotherapy without
PCI. Gender, age and education-matched HC (n = 15) who
met the same inclusion (except for cancer diagnosis) and ex-
clusion criteria were recruited through community advertise-
ments. Vascular risk factors were collected and classified in
low-risk (if the patient had none or one risk factor) and high-
risk (if the patient had two or more risk factors) groups
(Welzel et al. 2008). The study protocol was approved by
the local Ethical Commission and written informed consent
was obtained from all participants.

Neuropsychological assessment

Patients were evaluated using: Mattis Dementia Rating Scale–2
(MDRS-2); selected subtests of the Spanish version of the
Wechsler Adult Intelligence Scale-III (Vocabulary; Information;
Similarities; Digit Span; Letter Number Sequencing; Block
Design; Matrix Reasoning; Picture Completion); Rey Auditory
Verbal Learning Test (RAVLT); Wechsler Memory Scale–III
Logical Memory I-II; Rey-Osterreith Complex Figure Test
Copy, Immediate and Delayed; Spanish Version of the Boston
Naming Test; Verbal Fluency test (Phonemic and Semantic);
Trail Making Test (A-B); and Beck Depression Inventory
(BDI). Intelligence quotient was estimated using Vocabulary per-
formance. Raw cognitive test scores were compared with the
validated Spanish normative values, corrected for age and edu-
cation, and converted into z-scores. Neuropsychological results

are reported uncorrected for multiple testing and Bonferroni
corrected for multiple cognitive testing (n = 22). Cognitive im-
pairment was defined as a MDRS-2 raw score less than 123
(Mattis 1988), one test ≥2 or two tests ≥1.5 standard deviations
below the sample mean (Correa et al. 2013). All statistical anal-
yses were conducted in SPSS 18.0 (SPSS, Chicago, IL). One-
way analysis of variance and Chi-square tests were used to test
group differences with a critical p-threshold of 0.05.

Estimation of resting state networks

MRI scans acquisition

Participants’ images were acquired in 3 Tesla MRI (Siemens
Magnetom Trio Tim SyngoB17). Functional images were ob-
tained using a single-shot T2*-weighted gradient-echo echo-
planar imaging sequence [slice thickness = 4 mm; no gap;
number of slices =32, order of acquisition interleaved; repeti-
tion time (TR) = 2000 ms; echo time (TE) = 29 ms; flip angle
80°; matrix 128 × 128; field of view (FOV) = 240 mm; voxel
size 1.87 mm × 1.87 mm × 4 mm]. Each slice was aligned to
the plane intersecting the anterior and posterior commissures.
In addition to the functional images, a high-resolution T1-
weighted image was obtained for each subject using a
magnetization-prepared rapid-acquired gradient echo se-
quence [MPRAGE; slice thickness = 1 mm; no gap; number
of slices =240; TR = 2300 ms; TE = 2.98 ms; matrix
=256 × 256; FOV = 244 mm]. Functional MRI data were
acquired while participants were resting in the scanner with
their eyes closed during 7 min and 14 s.

Preprocessing

Data was preprocessed using Statistical Parameter Mapping
software (SPM8, Wellcome Department of Imaging
Neuroscience, University College, London, UK, http://www.
fil.ion.ucl.ac.uk/spm/). After Slice Timing, all images were
realigned and their mean image was calculated. The
structural T1 images were coregistered to their respective
mean functional image and segmented using the New
Segment toolbox inc luded in SPM8. Fol lowing
segmentation, grey and white matter images were fed to
DARTEL in order to achieve normalization (Ashburner
2007). After normalization, data was subsampled to 2 mm3

(91 × 109 × 91 voxels) and spatially smoothed with an 8 mm
at full width at half maximum (FWHM) Gaussian kernel.

Independent component analysis

Independent component analysis general parameters To
extract the different functional networks by means of ICA,
we used the GIFT software (http://icatb.sourceforge.net/)
(Calhoun et al. 2001). Thus, the smoothed functional images
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of subjects for each group independently (C+, C- and HC) and
for the total sample were fed to GIFT. Before starting the
analysis, it is necessary to set how many independents com-
ponents (IC; i.e., RSNs) would be extracted (it is explained
further in the text). ICA started with an intensity normalization
step. After this first step, data was first concatenated and re-
duced to different temporal dimensions using principal com-
ponent analysis, to be then analyzed with the Infomax algo-
rithm (Bell and Sejnowski 1995). No scaling was used, as
with the intensity normalization step, the intensities of the
spatial maps obtained are already in percentage of signal
change.

The ICASSO algorithmMost ICA algorithms, including the
Infomax algorithm used in our study, are based on gradient
methods using a cost function that must be minimized to reach a
good estimation of ICs. There is a random initialization of pa-
rameters each time the procedure is executed. Consequently,
these initial conditions can produce different results, in some
cases giving local minima of the cost function (i.e., a more or
less distant result of the expected better estimation). For this
reason, it is recommended to repeat the ICA several times to
calculate a reliability measure between the different results
achieved. In addition, ICA depends on the number of ICs
prefixed to run the analysis. For example, when too few ICs
are calculated, the RSNs retrieved are not accurate enough
(Abou-Elseoud et al. 2010), but if too much ICs are calculated
then some redundancies, namely two or more RSNs
imprecisely overlapping each other, may appear in the
results. For this reason, in order to ensure the best RSNs esti-
mation, this reliability analysis is equally recommended
(Himberg et al. 2004).

The ICASSO software package included in the GIFT tool-
box executes these reliability calculations. This algorithm in-
cludes an objective quality index (Iq), based on clustering of
mutual similarities between the different estimated compo-
nents of the set of runs of ICA, that reflects the compactness
and isolation of a cluster (Himberg et al. 2004). After all, this
algorithm gives the best possible result based on the
centrotype achieved after clustering the obtained components
from the different runs. Finally there is a back-reconstruction
process from the group ICA components estimated to the in-
dividual activation values for each participant of the different
groups and for each component. This result consists of an
individual map for each participant.

Resting state networks visual identificationOnce the ICA is
performed, it is fundamental to carry out a correct visual iden-
tification of the RSNs extracted. For this reason, four one-
sample t-tests of the individual spatial maps of each of the
independent components (IC) estimated were calculated, one
for the Total Sample and three for the groups taken separately
(C+, C- and HC). To make these calculations, each subject’s

network was treated as a random effect (Calhoun et al. 2001).
Once we had the aforementioned t-maps of each IC, we made
the visual identification of the RSNs.We used a critical thresh-
old with p ≤ 0.05 (family wise error correction, FWE) for the
total sample (n = 45) and a critical threshold with p < 0.001
(uncorrected) for each group separately (n = 15). It was con-
sidered that a RSN was correctly extracted if it appeared both
in the total sample and in each group (C+, C- and HC)
separately.

The selection of the most reliable number of ICs to extract
was performed using a two steps procedure. During the first
step, we performed in an exploratory way 100 repetitions of
the ICA using the ICASSO procedure with the number of
extracted ICs set to 10, 15, 20, 25 and 30 for the total sample
and for each one of the three groups separately to ensure the
best possible results. RSNs were identified by visual inspec-
tion and we found that the best extracted RSNs appeared for
15 and 20 ICs. The lower value (15 IC) was the model order
that gave the higher number of large-scale RSNs (i.e., of rec-
ognizable networks), a result that is in agreement with previ-
ous literature (Abou-Elseoud et al. 2010), without redundan-
cies for the total sample and for each one of the three groups
separately. The upper value (20 IC) was the first analysis in
which redundancies begun to appear.

During the second step, ICA analysis was performed 100
times using the ICASSO procedure with IC fixed from 15 to
19 IC. After visual inspection, we identified different well-
known RSNs that will be reported in the Results section. To
ensure enough goodness of fit of this procedure we
performed an inter-rater reliability analysis (Franco
et al. 2009) of the RSNs identification process using
the Cohen’s Kappa Coefficient (Cohen 1960). Once we
had finished this procedure we had different RSNs that,
in some cases, were extracted for different IC values.
Then, the definitive number of ICs was selected based
on the objective quality index Iq. When a RSN appeared
for more than one IC value, then the number of fixed ICs that
maximized the mean Iq parameter of the different groups (C+,
C- and HC) was selected as the one to be set to the second
level group analyses. As aforementioned, the greater the value
of Iq the greater the reliability of the result achieved. See
Fig. 1.

Statistical analysis between groups

The individual maps of the RSNs selected for each group
member were the ones used for the statistical analyses. A
mask was calculated for all the RSN identified using the one
sample t-test for the total sample with critical p ≤ 0.05 (FWE).
Only voxels included in these masks were analyzed. Then, for
each RSN identified with the procedure described above, a
one-way Analysis of Variance (ANOVA) with three levels
(HC, C+, and C-) was calculated to find differences between
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groups. Additional post-hoc analyses using two-sample t-tests
were performed to show the directions of the significant dif-
ferences found between groups FWE-corrected at the voxel
level. A Bonferroni correction was also performed to correct
for multiple comparisons of the RSNs identified.

Additionally, for each of the RSN showing group differ-
ences, and concretely for the patient’s groups involved in these
comparisons, a Region of Interest (ROI) for each significant
cluster peak was defined (sphere of 4 mm of radius from the
peak) and it was then applied to each individual image. Again,
for each RSN of interest, a mean voxels’ activation value for
each individual and each ROI was obtained. We then used
these voxels’ activation values to make an exploratory analy-
sis of the association between cognitive deterioration and
brain connectivity changes, by computing a Point Biserial
correlation coefficient analysis (Tate 1954) between cognitive
impaired and not cognitive impaired patients and the individ-
ual mean of the voxel activation values of each ROI defined.
More concretely, a Point Biserial correlation analysis was per-
formed between all the ROIs created at the significant peaks of
the different RSN and cognitive impairment (yes/no).

Multivariate pattern analysis

MVPA was carried out with the Pattern Recognition for
Neuroimaging Toolbox v1.1 (http://www.mlnl.cs.ucl.ac.
uk/pronto/prtsoftware.html, (Schrouff et al. 2013). There are
two Machine Learning (ML) algorithms implemented in this
toolbox, the Support Vector Machines (SVM) and the
Gaussian Process Classification (GPC) algorithm. These algo-
rithms were developed to deal with classification problems.
SVM separates between classes projecting a low dimensional
training data where it is difficult to perform a linear separation
between classes, into a higher dimensional feature space
where it is easier to find a hyperplane to linearly separate
patterns. In contrast, GPC based on Bayesian Theory, uses
its rules to find a function distribution that approximates the
best possible training set classification. SVM has been widely
used to perform MVPA (Mourao-Miranda et al. 2005) but
there are some examples of GPC applied to MVPA (Challis
et al. 2015; Marquand et al. 2010). We tested both MPVA
approaches and we found a better performance of GPC in
front of SVM in our data. Each feature set was constructed

Fig. 1 Flowchart of the
identification progress of Resting
State Networks
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using the scans of the RSNs that showed significant differ-
ences in the previous step for each one of the groups’ combi-
nations. Specifically, a mask defined with the significant clus-
ters of the comparisons between groups for each RSN was
applied to the scans. Values from all voxels within the mask
were used. Features were mean centered, and cross-validation
was performed leaving one subject out per group. Estimation
of the average and groups’ classification accuracy and signi-
fication was performed by a permutation test of 10,000 itera-
tions. MVPA gives the discriminant performance achieved as
a balanced accuracy of the different groups to be classified and
classification accuracy for each group independently.

Binary classification accuracy assessment can be per-
formed using Receiver Operating Characteristic (ROC)
curves. The ROC curve is the result of plotting sensitivity,
against the complement of specificity (1-specificity) of the
classification process. The Area Under the Curve (AUC) giv-
en by the plot is an indicator of the accuracy of binary
decision-making processes (Fawcett 2006). The AUC of the
ROC was calculated to show the categorization power in
terms of sensitivity and specificity. All ROC analyses were
conducted in SPSS 21.0 (SPSS, Armonk, NY).

Results

Patient characteristics

Characteristics of the entire cohort are described in Table 1.
There were no significant differences between groups in age,
gender, education or grouped vascular risk factors. When an-
alyzed independently, only smoking history showed a signif-
icant difference between lung cancer patients and HC (X2 (1,
Yates continuity correction) = 10,04, p < 0.002), but no dif-
ferences were observed between both cancer groups (C+ and
C-, Fisher exact test, p > 0.48).

Neuropsychological assessment

The neuropsychological assessment revealed that lung cancer
patients performed significantly worse than healthy controls in
several subtests (WAIS-III Matrix Reasoning, WAIS-III
Picture Completion, Wechsler Memory Scale -III Logical
Memory I, Wechsler Memory Scale-III Logical Memory II,
ROCF immediate copy and Phonemic fluency). However, af-
ter applying Bonferroni correction, only ROCF immediate
copy resulted significant between C+ and HC groups
(p < 0.002). Both cancer groups exhibited a significant higher
rate of cognitive impairment (40% of C+ and 40% of C-)
compared to healthy controls (X2 (1, Yates continuity correc-
tion) = 6,26, p = 0.012). See Table 2.

Resting state networks

Networks identified

The inter-rater reliability estimation resulted in a good agree-
ment between raters (Cohen’s Kappa Coefficient 0.62; 95%
CI, 0.534 to 0.703; p < 0.0001) (Altman 1999). The RSNs
identified with ICA with a model order of 15 components
were: the DMN, and other classical networks localized in
Auditory Cortex, Visual Cortical Area, and Sensory Motor
System (see Fig. 2) (Beckmann et al. 2005). Predominantly
Right Anterior Temporal Network (RAT) was detected with a
model order of 17 components (Kiviniemi et al. 2009).
Finally, Predominantly Left Anterior Temporal Network
(LAT) and Cerebellum (Cb) appeared when the number of
predefined components was 18. Other RSNs were discarded
for several reasons: in some cases, they were artifacts, redun-
dancies or they didn’t meet the eligible criteria stated above
(Table 3).

Differences between groups

We found significant differences between groups in four of the
seven RSN identified. These differences appeared in DMN,
LAT, RAT and Cb. The DMN showed a decreased connectiv-
ity in both lung cancer groups compared to HC (precuneus
and middle occipital gyrus bilaterally). Specifically, the C+
group showed decreased connectivity compared to HC in left
cuneus and in precuneus and middle occipital gyrus bilateral-
ly. The C- group showed decreased connectivity compared to
HC in bilateral precuneus, right middle temporal gyrus, pos-
terior cingulate gyrus and left inferior parietal and middle
occipital gyrus. In addition, the C+ group showed decreased
connectivity of the DMN compared to C- in left cuneus (see
Fig. 3).

Significant differences in the Left Anterior Temporal net-
work (LAT) consisted in increased connectivity of both lung
cancer groups compared with HC and of the C+ group com-
pared to HC in the left Inferior Temporal Gyrus. Similarly, in
the Right Anterior Temporal network (RAT) there was an
increased connectivity of both lung cancer groups compared
to HC and of the C+ group compared to HC in right
parahippocampal gyrus, and of the C+ group compared to
C- in right inferior temporal gyrus and middle temporal pole
(see Fig. 3).

We also found differences in the cerebellum network (Cb)
consisting in increased connectivity of the C+ group com-
pared to HC (vermis and left superior cerebellum) and the
C- group compared to HC (inferior cerebellum bilaterally).
See Table 4 and Fig. 3.

Point biserial correlation analyses showed a marginal rela-
tionship between cognitive impairment and the mean func-
tional connectivity in Left Cuneus (MNI -2, −28, 26) within
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the DMN. Concretely we found a significant correlation
(r = −0.546, p = 0.035, uncorrected for multiple comparisons)
for the C+ patients group. The lower the mean functional
connectivity in the DMN, the higher the rate of cognitive
impairment for the C+ group.

Classification accuracy using multivariate pattern analysis

Classification performance of our resulting RSNs significant
t-maps for all comparisons was highly accurate (see Fig. 4).
The GPC was more accurate than the SVM classification for
all the comparisons, for this reason the results reported come
from the GPC algorithm. Specifically, balanced accuracy for
lung cancer (grouping C+ & C-) and HC group was 82.2%
(AUC 0.82, p < 0.001), being for lung cancer 91.1%
(p < 0.011) and for HC 73.3% (p < 0.001) independently;
between C+ and HC groups reached a balanced accuracy of
95.8% (AUC 0.96, p < 0.001), being in C+ of 93.3%
(p < 0.001) and in HC of 98.3% (p < 0.001) independently;
between C- and HC groups was 86.7% (AUC 0.87,
p < 0.001), being for C- of 83.3% (p < 0.002) and for HC of
90.0% (p < 0.001); between C+ and C- group reached accu-
racy was 86.7% (AUC 0.87, p < 0.001), being for C+ group of
80.0% (p < 0.001) and for C- group of 93.3% (p < 0.001); and
finally, classification between the three groups independently
(C+, C- and HC) reached a balanced accuracy of 78.9%
(p < 0.001), being for C+ group of 78.3% (p = 0.011), for
C- group of 71.7% (p = 0.024) and for HC group of 86.7%
(p < 0.001).

Discussion

The present study documents brain connectivity differences in
a cohort of lung cancer patients. As an improvement from
previous studies, selection of RSNs was based on the
ICASSO algorithm to ensure that our results were as much
reliable as possible, being our study, to the best of our knowl-
edge, the first to use this algorithm in chemobrain literature.
Additionally, we used the objective quality index Iq to empha-
size the importance of achieving the most possible reliable and
qualitative RSNs previously to the analysis of statistical dif-
ferences between groups. Our results revealed that lung cancer
patients, both C+ and C- groups, exhibited cognitive impair-
ment together with differences in connectivity in DMN, LAT,
RATand Cerebellum. Concretely we found decreased connec-
tivity of the posterior regions of the DMN and increased con-
nectivity in bilateral temporal and cerebellar regions in com-
parison to the HC group. Additionally, the C+ group displayed
brain-specific differences in comparison to the C- group. The
C+ group exhibited decreased connectivity in left cuneus and
increased connectivity in right inferior temporal gyrus and
middle temporal pole in comparison to C- group. Hence, these
connectivity-imaging findings suggest that both cancer by it-
self and platinum-based chemotherapy might be associated
with the development of cognitive toxicity.

The DMN, one of the most commonly observed RSNs,
includes the precuneus, posterior cingulate, medial frontal,
middle temporal, and lateral parietal regions as well as the
hippocampus (Damoiseaux et al. 2006) and supports

Table 1 Baseline demographics
and vascular risk factors of the
entire cohort

C+ (n = 15) C- (n = 15) HC (n = 15) p-value

Age (years)* 59.73 ± 6.92 60.07 ± 6.69 59.80 ± 7.55 0.99

Gender&

Male 13 (87) 13 (87) 13 (87) 1

Female 2 (13) 2 (13) 2 (13)

Education (years) ** 8 (0,17) 8 (0,12) 7 (6,19) 0.98

Estimated verbal IQ* 9.92 (2.43) 10.31 (3.07) 12 (2.88) 0.09

Smoking& 15 (100) 13 (87) 7 (47) 0.002

Alcohol& 7 (47) 2 (13) 3 (80) 0.72

HT& 6 (40) 9 (60) 4 (27) 0.18

DM type II& 2 (13) 6 (40) 1 (7) 0.23

Dyslipidemia& 6 (40) 8 (53) 10 (67) 0.34

Vascular risk factors&

Low-risk (0 or 1) 6 (40) 4 (27) 7 (47) 0.52

High-risk (≥ 2) 9 (60) 11 (73) 8 (53)

Statistically significant results are marked in bold; C+ chemotherapy-treated small-cell lung cancer group; C- non-
chemotherapy treated non-small cell lung cancer group; HC healthy control group; IQ Intelligence quotient; HT
hypertension; DM diabetes mellitus

*(mean ± SD)

**median (range)
& n (%)
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important core processes such as implicit learning, autobio-
graphical memory retrieval, prospection, monitoring, and oth-
er internally focused thought processes (Raichle 2011). The
DMN connectivity reduction has been described as a promis-
ing biomarker of brain aging, mild cognitive impairment and
Alzheimer’s disease (Damoiseaux 2012; Sheline et al. 2010).
Concerning DMN connectivity and chemotherapy, previous
RS-fMRI studies in line with our findings in lung cancer pa-
tients, showed a decrement in global DMN connectivity with
special emphasis in the posterior cingulate cortex, the
intraparietal sulcus and the precuneus (Bruno et al. 2012;
Dumas et al. 2013; Kesler et al. 2013) (LaViolette et al.
2009; Piccirillo et al. 2015). Concretely, in our study although

both lung cancer groups, prior and following chemotherapy,
exhibited a global DMN disruption, those changes were larger
for the C+ group. In contrast to breast cancer population, lung
cancer patients underwent platinum-based chemotherapy,
which as described in animal studies, is associated with an
increased cell death and decreased cell division in the
subventricular zone, the dentate gyrus of the hippocampus
and in the corpus callosum (Dietrich et al. 2006). Taken to-
gether, our findings suggest that the cancer by itself might be
responsible for most of the DMN connectivity disruption ob-
served in lung cancer patients and that the addition of
platinum-based chemotherapy adds modest but brain-
specific changes.

Table 2 Neuropsychological results

C+ (n = 15) C- (n = 15) HC (n = 15) One-way ANOVA
p-value ¤

Cognitive impairment& 6 (40)+ 6 (40)++ 0 (0) 0.012a

MDRS-2 $ ** 144 (137–144) 144 (134–144) 144 (137–144) 0.72b

BDI** 11 (2–22) 7 (2–27) 5 (1–22) 0.5b

WAIS-III Vocabulary* -0.03 (0.81) 0.10 (1.02) 0.67 (0.96) 0.09

WAIS-III Information* 0.23 (0.86) 0.46 (1.12) 0.89 (0.96) 0.18

WAIS-III Similarities* 0.38 (0.80) 0.41 (1.11) 0.60 (0.75) 0.58

WAIS-III Digits span* 0.23 (1.06) 0.20 (0.99) 0.47 (0.90) 0.53

WAIS-III Letters Number Sequencing * -0.20 (0.88) 0.02 (0.89) 0.29 (0.77) 0.23

WAIS-III Block Design* 0.13 (0.99) 0.49 (0.97) 0.75 (0.83) 0.09

WAIS-III Matrix Reasoning* -0.38 (0.84)+ -0.08 (1.19)++ 0.64 (0.87) 0.01

WAIS-III Picture Completion* 1.38 (0.69)+ 2.28 (0.79) 1.95 (1.02) 0.04

RAVLT raw 1$ 4.15 (1.62) 4.46 (1.50) 5.20 (1.65) 0.15

RAVLT long-delay recall (A7)$ 6.15 (3.08) 7.31 (3.01) 8.00 (3.02) 0.30

RAVLT list B$ 4.69 (1.54) 4.62 (2.22) 5.20 (1.37) 0.42

RAVLT short-delay recall (A6) $ 6.00 (2.55) 6.62 (3.35) 8.00 (3.02) 0.16

RAVLT long-delay recognition$ 10.15 (2.30) 11 (2.86) 11.80 (2.04) 0.18

WMS-III Logical Memory I* 0.20 (0.77) -0.18 (0.75) 0.60 (0.95) 0.07

WMS-III Logical Memory II * 0.79 (1) 0.02 (0.79)+++ 0.95 (1.09) 0.02

ROCF immediate copy* 0.46 (0.81)+ 1.59 (1.18) 1.82 (1.07) 0.001©

ROCF delayed copy* 0.69 (0.64) 0.46 (0.74) 0.71 (0.68) 0.45

Brief Spanish version Boston Naming Test* 0.79 (0.70) 0.64 (0.90) 0.49 (0.50) 0.39

Animal naming* 0.36 (0.76) 0.13 (0.64) 0.18 (0.77) 0.51

Phonemic fluency* -0.26 (1.25)+ -0.28 (1.03) 0.53 (0.65) 0.03

Trail Making test A* -0.28 (0.56) -0.28 (0.78) 0.20 (0.93) 0.22

Trail Making test B* -0.54 (0.76) -0.56 (0.77) -0.07 (0.84) 0.22

All results are z-scores except for $ raw score

C+: chemotherapy-treated small-cell lung cancer group; C-: non-chemotherapy treated non-small cell lung cancer group; HC Healthy control group.
MDRS-2: Mattis Dementia Rating Scale-2; RAVLT Rey Auditory-verbal Learning Test;WMS-IIIWechsler Memory Scale – III; ROCF Rey-Osterreith
Complex Figure; BDI Beck Depression Inventory

+ C+ performed significantly worse than HC; ++ C- performed significantly worse than HC; +++ C- performed significantly worse than HC and C+

Statistically significant results are marked in bold; P-values are reported uncorrected for multiple comparisons. Between-group differences that were
significant after Bonferroni correction are marked with ©

* mean (SD); & n (%); ** median (range)

¤ Between-group ANOVA p-value, except from a (Chi-Square) and b (Kruskal-Wallis test). T-test was used to compare pairs of groups
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Less studied, but also very important, are the anterior temporal
networks. Specifically, the lateral anterior temporal network in-
cludes superior, middle and inferior temporal gyrus and the me-
dial anterior temporal network includes the parahippocampal gy-
rus and the uncus involving the head of the hippocampus and the
amygdala (Gour et al. 2011). Functionally, the different compo-
nents of these temporal networks have been involved in declar-
ative memory (Eichenbaum et al. 2007). Recently, an increased
connectivity of these networks has been described in patients
with cognitive impairment (Gour et al. 2011). In the present
study, both lung cancer patients revealed increased connectivity
of bilateral temporal networks in comparison to HC, but also
increased connectivity of the C+ group compared to C- in right
inferior temporal gyrus andmiddle temporal pole. Although both

bilateral temporal networks showed increased connectivity in
both lung cancer groups, this increment was higher in C+ com-
pared to C- in brain specific regions, similarly to our findings in
the DMN. In our opinion, the increased connectivity of bilateral
temporal networksmay be compensatory in nature, as it has been
described in mild cognitive impaired population (Gour et al.
2011).

Additionally, we also found differences in the Cerebellum
network consisting in increased connectivity of the C+ group
compared to HC (vermis and left superior cerebellum) and the
C- group compared to HC (inferior cerebellum bilaterally). The
cerebellum processes information from functionally diverse re-
gions of the cerebral cortex; however, the topography of the
connections between the cerebellar and cerebral cortices

Cb AC VCA SMS

DMN LAT RAT 0

25

T 

v 

a 

l 

u 

e 

s

Fig. 2 Resting State Networks identified using Independent Component
Analysis for the total sample (n = 45). The networks identified are
Cerebellum (Cb), Auditory Cortex (AC), Visual Cortical Area (VCA),
Sensory Motor System (SMS), Default Mode Network (DMN),
Predominantly Left Anterior Temporal Network (LAT) and
Predominantly Right Anterior Temporal Network (RAT). The maps are

significant using athreshold of p ≤ 0,05 (Family-wise Error Correction)
and a cluster extent of 100 voxels. Results are displayed on a t-map and
superimposed on a customized T1 template created averaging the warped
images after normalization. The threshold bar shown at the right side of
the figure represents the one-sample t-test values

Table 3 Iq value criterion for
Resting State Networks selection Number of components

15 16 17 18 19

Cerebellum 0,9782 0,9787 0,9801 0,9812* 0,9800

Auditory cortex 0,9848* 0,9776 0,9813 0,9823 0,9799

Visual cortical area 0,9806* 0,9748 0,9782 0,9795 0,9796

Default mode network 0,9795* 0,9434 0,9715 0,9711 0,9779

Sensory motor system 0,9852* 0,9717 0,9831 0,9827 0,9743

Predominantly left temporal 0,9769 0,9769 0,9760 0,9770* 0,9733

Predominantly right temporal NP 0,9747 0,9761* NP NP

*Maximum Iq, NP Not present
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remains largely unmapped (Duzel et al. 2009; O'Reilly et al.
2010). A recent study exploring RSNs found that cerebellum
can be functionally divided in zones: a primary sensorimotor
area, functionally connected to primary sensory and motor cor-
tex, and what we might name as a supramodal zone, function-
ally connected to dorsolateral prefrontal and inferior posterior-
parietal regions (O'Reilly et al. 2010). In our study, while the C+
group showed an increased connectivity of superior cerebellum
more functionally connected to primary sensory-motor cortex,
the C- group showed a bilateral increased connectivity of a part
of the inferior cerebellum included in the functionally described
supramodal zone that might assist cortical brain regions in their
aim to compensate cognitive deficits.

More important is the relationship between functional and
structural brain changes associated with chemotherapy-induced
cognitive impairment. Our group recently published a structural
MRI study with the same lung cancer cohort (Simo et al. 2015).
This study showed gray matter atrophy in bilateral paralimbic
regions including the cingulate cortex, the insula, the
parahippocampal gyrus and left thalamus together with white
matter integrity damage in bilateral inferior longitudinal fascic-
ulus - which connects temporal regions with parietooccipital
ones - of the C+ group. Supplementary Fig. 1 depicts the overlap
of past and current results. In the same vein, previous studies
focusing in mild cognitive impaired population found that gray
matter atrophy was related to a decrease in DMN connectivity

Fig. 3 Group differences for functional connectivity between groups.
Significant differences between groups are reported at a FWE-corrected
threshold at voxel level but displayed on a t-map and superimposed on a
standardized T1 template using MNI coordinates at an uncorrected p
0.001 with a cluster extent of 20 voxels. Clusters in blue show a decrease
of the functional connectivity and clusters in red show an increase of the
functional connectivity of the patients groups (C+ or C-) against Healthy
Controls. Point biserial correlation between cognitive impairment (Yes/

No) and the mean functional connectivity in Left Cuneus (MNI -2, −28,
26) within the DMN for the C+ group showed a significant correlation.
C+ Lung Cancer Patients following Chemotherapy; C- Lung Cancer
Patients before Chemotherapy; HC healthy control group; R: right hemi-
sphere; MOG-Middle Occipital Gyrus; MTG-Middle Temporal Gyrus;
PHG-Parahippocampal Gyrus; ITG-Inferior Temporal Gyrus. The thresh-
old bar shown at the right side of the figure represents the one-sample t-
test values
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(Dickerson et al. 2004; Sperling 2007), and to an increase in
temporal functional connectivity (Gour et al. 2011). This tem-
poral increased connectivity has been traditionally interpreted as
a compensatory mechanism that occurs in response to an early
pathological insult (Gour et al. 2014). It has been hypothesized
that hyperconnectivity is an early consequence of brain injury
and disease (early structural damage including white matter in-
tegrity damage) through increasing neural network response to
competing demands, as for example, increasing anterior tempo-
ral lobe connectivity to preserve memory functioning. When a
more advanced neural loss (sever structural damage) occurs,
network recruitment might reach an upper threshold and after
that non-returning point, no longer hyperconnectivity exists
(Hillary et al. 2015).

Regarding cognitive deficits, more than one third of the
patients (40%) in both lung cancer groups met criteria
for cognitive impairment; however the neuropsychological

profile was quite different. The C- group performed worse
than HC and C+ in long-term verbal memory, as has been
described in cancer patients before the initiation of therapy
(Shilling et al. 2005; Wefel et al. 2004). Following treatment,
and in line with previous literature (Jim et al. 2012), the C+
group performed worse than the HC group in visuospatial
measures and verbal phonemic fluency. Although cognitive
changes associated with either cancer or cancer treatment have
been extensively recognized, the pathogenesis of these
neurocognitive changes remains unclear. In this setting, sev-
eral hypotheses have been proposed including the biology of
cancer as well as common risk factors for the development of
both cancer and mild cognitive changes in normal aging
(Ahles and Saykin 2007). This last hypothesis is also
supported by the similar functional connectivity changes
found in the present study in comparison to mild cog-
nitive impairment literature.

Table 4 Localization of pairwise
significant differences found at
different Resting State Networks

Contrast Peak MNI
coordinates

Cluster
extent

Peak
student t

Peak p
(FWE)

Cluster localization

Cerebellum

C+ > HC 4–30 -14

−12 -26-16
39

24

7,01

6,07

P < 0,001

P < 0,002

Vermis

Left cerebellum 3

C- > HC 14–40 -40

−4 -46 -38

28

23

6,58

5,16

P < 0,001

P < 0,014

Right cerebellum 9

Left cerebellum 9

Default mode network

C+ < HC 8–70 54

−38–76 28
12–68 32

38–68 26

−2 -88 26

390

104

59

33

24

7,22

6,68

6,11

6,00

5,75

P < 0,001

P < 0,001

P < 0,001

P < 0,001

P < 0,001

Right and left precuneus

Left middle occipital gyrus

Right precuneus

Right middle occipital gyrus

Left cuneus

C- < HC -6 -68 56

−38–76 28
8–34 46

42–68 24

−44 -48 46

897

82

21

21

23

8,79

6,71

6,09

5,47

5,43

P < 0,001

P < 0,001

P < 0,001

P < 0,001

P < 0,001

Right and left precuneus

Left middle occipital gyrus

Posterior cingulate

Right middle temporal gyrus

Left inferior parietal gyrus

C+ < C- -8 -76 22 30 5,89 P < 0,001 Left cuneus

C+ & C- < HC -6 -68 56

−38–76 28
40–68 26

1061

214

73

8,75

7,77

6,31

P < 0,001

P < 0,001

P < 0,001

Right and left precuneus

Left middle occipital gyrus

Right middle occipital gyrus

Left anterior temporal

C+ > HC -46 8–38 118 6,76 P < 0,001 Left inferior temporal gyrus

C+ & C- > HC -46 6–36 45 5,53 P < 0,003 Left inferior temporal gyrus

Right anterior temporal

C+ > HC 26–6 -28 493 8,69 P < 0,001 Right parahippocampal gyrus

C+ > C- 56 12–28 47 5,18 P < 0,001 Right inferior temporal gyrus and
right middle temporal pole

C+ & C- > HC 14–18 -20 107 5,75 P < 0,001 Right parahippocampal gyrus

FWE Family wise error correction; MNI Montreal neurological institute coordinates; C+ Chemotherapy-treated
small-cell lung cancer group; C- Non-chemotherapy treated non-small cell lung cancer group;HCHealthy control
group
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Additionally, we found a significant correlation between
cognitive functioning and connectivity changes in the DMN
for the C+ group. Cognitive impairment showed a negative
correlation within the DMN; the lower the functional connec-
tivity in the DMN, the higher the rate of cognitive impairment
for the C+ group.

Besides, MVPA in our study discriminated significantly
and accurately between groups. A previous work (Kesler
et al. 2013) showed similar results concerning the classifica-
tion performance of MVPA in a group of breast cancer pa-
tients. While they significantly distinguished between C+
from both, the C− and the HC groups based on the altered
DMN connectivity, the categorization between C- and HC

groups was not significant. In contrast, our study achieved a
good discrimination power between all groups, with a high
sensitivity and specificity. Taken together, our results support
the idea that an altered DMN connectivity represents a prom-
ising biomarker of the chemotherapy-induced cognitive
impairment.

Our study presents some limitations. The cross-sectional
design of the study may have limited the possibility to clearly
isolate the effect of chemotherapy from more general cancer-
related changes. The marked smoking history of both lung
cancer groups was a potential confounding variable that may
partially explain our DMN disruption results. For this reason,
we performed two additional analyses. In the first one, we

Fig. 4 Receiver Operating Characteristic (ROC) Curves. Classification
performance of the resulting RSNs significant T-maps for all comparisons
balanced accuracy. a Lung cancer (grouping C+ & C-) and HC group

(AUC 0.82, p < 0.001). bC+ and HC groups (AUC 0.96, p < 0.001). cC-
and HC groups (AUC 0.87, p < 0.001). d C+ and C- group (AUC 0.87,
p < 0.001)
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focused only on smokers’ age-, gender- and education-
matched patients (SCLC, n = 6; NSCLC, n = 6 and HC,
n = 6), achieving similar results in the DMN connectivity. In
the second one, we repeated th e same methodology in an
increased group of 21 HC (11 smokers and 10 non-smokers),
resulting in non-statistically significant differences between
groups.

In conclusion, lung cancer patients prior and following
platinum-based chemotherapy treatment exhibit cognitive
deficits together with a functional connectivity disruption
not only in DMN but also in bilateral temporal and cerebellar
regions. While the decrement in DMN connectivity has been
related with cancer- and chemotherapy-related cognitive im-
pairment, the increment in bilateral temporal networks found
in our study suggests that other brain regions may increase its
connectivity to compensate these cognitive deficits.
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