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Purpose of review

Huntington’s disease is a neurodegenerative disorder characterized by a triad of motor, cognitive and
psychiatric disturbances. There is great variability regarding the prominence and evolution of each type of
clinical sign. One possible source of phenotypic heterogeneity could be the more prominent degeneration
of specific brain circuits. The scope of this review is to highlight the most recent neuroimaging studies that
have analysed the relationship between brain changes and motor, cognitive and psychiatric alterations in
Huntington’s disease.

Recent findings

The results from recent neuroimaging studies are heterogeneous. Although there is a great overlap between
the different regions associated with each symptomatic domain, there is some degree of differentiation. For
example, the motor network is associated with motor impairment, whereas the ventral striatum is especially
involved in emotional deficits related with psychiatric problems.

Summary

Motor, cognitive and psychiatric impairments are associated with structural and functional brain
biomarkers. However, the specificity of the regions involved remains unknown, because these studies
focused on specific regions and symptoms. In order to tease apart the neural substrates that underlie the
phenotypic heterogeneity in Huntington’s disease, multivariate approaches combining brain and
behavioural measures related to all symptomatic domains should be considered in the future.
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INTRODUCTION

Huntington’s disease is a neurodegenerative dis-
order caused by an abnormal expansion of a CAG
repeat in the HTT gene. Above 35 CAG repeats, the
length of the expansion is inversely correlated with
the age at onset and positively correlated with the
rate of disease progression. A mixture of motor
dysfunction, cognitive impairments and psychiatric
disturbances characterizes the disease. Huntington’s
disease gene carriers are clinically diagnosed as
manifest patients on the basis of motor dysfunction
using the Unified Huntington’s Disease Rating Scale
total motor score (UHDRS TMS) [1]. However, cog-
nitive impairments and psychiatric problems are
common before the onset of motor dysfunction,
during what is considered the pre-manifest phase
of the disease. Although alterations in all three
domains (motor, cognitive and psychiatric) are
common, Huntington’s disease is characterized by
a great heterogeneity in the prominence and evol-
ution of each type of symptom.
The exact relationship between topological
brain alterations and the clinical symptoms
observed in Huntington’s disease still remains
unknown. One possible source of the individual
differences in the prominence of each symptomatic
domain could be the more prominent degeneration
of specific brain circuits. In this regard, neuro-
imaging studies can contribute to the understand-
ing of the neurobiological basis of phenotypic
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KEY POINTS

� Huntington’s disease is a neurodegenerative disorder
characterized by a mixture of motor, cognitive and
psychiatric symptoms.

� There are individual differences in the prominence and
evolution of each type of symptom.

� Given the key role of striatal neurodegeneration in
Huntington’s disease, it is possible that the observed
phenotypic variability in Huntington’s disease may
reflect differences in the degree of degeneration in the
different functionally specialized cortico-striatal circuits.

� One way of investigating the sources of phenotypic
heterogeneity in Huntington’s disease is examining the
relationship between the different symptoms and
specific brain changes.

� Neuroimaging studies using multivariate approaches
that incorporate brain and behavioural measures
related to the three types of symptoms can shed light on
the neurobiological basis of the observed phenotypic
heterogeneity in Huntington’s disease.
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heterogeneity in Huntington’s disease. The scope of
this review is to highlight neuroimaging studies
from last year that have analysed the relationship
between specific brain changes and motor, cogni-
tive and psychiatric alterations in Huntington’s
disease.
NEUROBIOLOGICAL BASIS OF
HUNTINGTON’S DISEASE

Striatal atrophy is considered a hallmark of the
disease, being observable between 15 and 20 years
before the predicted onset [2–4]. Striatal neuronal
loss has been found to be correlated with CAG repeat
length [5–8], and also with motor and cognitive
dysfunction [9], suggesting an important role of this
structure in the pathogenesis of Huntington’s
disease. Neurodegeneration follows a pattern that
starts in the striatum from caudal and dorsal
subregions to rostral and ventral areas [6,8,10].
Widespread cortical degeneration is observable in
early stages of the disease, with relative sparing of
the anterior frontal and lateral temporal regions
[6,11,12].

Given the key role of striatal neurodegeneration
in Huntington’s disease, it is possible that the
observed phenotypic variability in Huntington’s
disease may reflect individual differences in the
degree of degeneration in the different functionally
specialized cortico-striatal circuits. Parallel cortico-
striatal loops have been proposed to form sensor-
imotor, associative and limbic circuits [13–16],
1350-7540 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
although further subdivisions have also been
suggested [17,18]. Motor, premotor and sensorimo-
tor projections to the dorsolateral striatum form the
motor circuit. The associative circuit, devoted to
executive functions, consists of dorsolateral and
ventrolateral prefrontal cortex projections into the
rostral parts of the striatum, mainly the head of the
caudate nucleus. The limbic circuit, which is mainly
involved in reward and emotional processing, is
formed by projections from orbitofrontal, ventro-
medial prefrontal and anterior cingulate cortices,
hippocampus and amygdala into the ventral stria-
tum. Importantly, these circuits partially overlap
and interact with each other [16].
RELATIONSHIP BETWEEN NEUROIMAGING
AND CLINICAL SYMPTOMS IN
HUNTINGTON’S DISEASE

Below, we review recent neuroimaging studies that
include correlation analyses between neuroimaging
data and clinical scores or behavioural measures,
even though in many instances that was not the
primary focus of the study. We have subdivided the
findings into different sections according to the
symptomatic domains that characterize Hunting-
ton’s disease: motor, cognitive and psychiatric.
Motor domain

Regarding motor disturbances, the most prominent
motor sign of Huntington’s disease is chorea, which
is experienced by more than 90% of the patients
[19]. Dystonia and bradykinesia tend to develop in
middle to late stages of Huntington’s disease, and
rigidity is common in advanced stages. Ocular
movement abnormalities are also observed during
the pre-manifest phase and persist throughout the
course of the disease.

The most robust finding from previous neuro-
imaging studies related to motor disturbances is the
correlation between the loss of striatal volume and
UHDRS TMS [20–26]. Recent studies have found
further functional and structural alterations that
correlate with motor impairment. In a study on
early Huntington’s disease combining diffusion-
weighted imaging and resting-state functional mag-
netic resonance imaging (fMRI), M€uller et al. [27]
found that higher UHDRS TMS, reflecting more
severe motor impairment, correlated with reduced
strength of functional connectivity of the insula
with the motor network and reduced structural
connectivity in two motor-related tracts – the
cortico-spinal tract and the tract connecting
the thalamus to the primary somatosensory
cortex. Using a multivariate approach combining
functional and structural brain measures in order to
rved. www.co-neurology.com 399
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characterize the sensorimotor circuit of manifest
and pre-manifest individuals, Orth et al. [28

&&

] found
that a pattern of loss of caudate, total grey matter
and white matter volume and reduced cortical
thickness in premotor and somatosensory cortices
correlated with worse motor disturbances, measured
by UHDRS TMS and grip force – a clinical measure of
motor impairment. These results suggest that struc-
tural measures of volume and cortical thickness
are especially sensitive for the characterization of
brain alterations in Huntington’s disease. However,
measures of individual non-motor brain regions
were not included in this study. Therefore, it is
not possible to conclude whether the association
observed between motor impairment and sensori-
motor areas is specific.

It has also been suggested that electroencepha-
lography recordings may be sensitive biomarkers
to early disruptions of cortical connectivity in
Huntington’s disease [29]. In this regard, Turner
et al. [30] investigated neural sensorimotor integ-
ration and motor processing in a motor task. Degen-
erative changes in the right caudate morphology
were associated with a delayed neural-related
premotor activation and execution. Better motor
performance significantly correlated with larger
volumes in the right putamen and the right caudate.
However, the authors did not examine the relation-
ship between premotor neural activity and motor
performance.

Regarding the interaction between motor and
cognitive functions, Holtbernd et al. [31] studied the
changes in motor learning-related activation in pre-
manifest individuals over a period of 18 months
using PET. Network analyses were used in order to
identify spatial covariance patterns with increasing
expression over time such that patient scores were
greater for individuals who were nearer to age at
onset. The pattern of spatial covariance was charac-
terized by increased learning-related activation in
the right orbitofrontal cortex and reductions in the
right medial prefrontal and posterior cingulate cor-
tices. Individuals with low performance at baseline
exhibited a low network expression at baseline,
which increased significantly over time, reaching
abnormally elevated levels compared to controls.
Learning performance improved over time in the
group that showed low performance at baseline.
Given that the increase in network activation was
accompanied by improvement in learning perform-
ance, the authors interpreted these results as reflect-
ing a compensatory mechanism.

Cognitive domain
Cognitive deficits in Huntington’s disease may be
present more than a decade before motor diagnosis
400 www.co-neurology.com
[11,32,33]. The first signs of cognitive dysfunction
are usually the deterioration of psychomotor speed
and executive functions [34]. Alterations in verbal
fluency, cognitive flexibility and planning are
amongst the most common deficits regarding exec-
utive functions in Huntington’s disease [35–40].
Furthermore, Huntington’s disease also entails
impairments in perception of time [37–40], explicit
motor learning [41], episodic memory [42], spatial
memory [43], rule learning in language [44–48] and
spontaneous speech [49–51].

Converging evidence from previous neuroimag-
ing studies shows an association between reduced
striatum volume and global cognitive deficits
[24,26,52]. Recently, Kim et al. [53

&

] examined the
regional structural damage of the caudate nucleus
using surface-based morphometry in pre-manifest
individuals, and observed that deficits in executive
functions and working memory significantly corre-
lated with grey matter loss in the anteromedial
subregion of the caudate. However, cognitive defi-
cits seem to derive not only from the local atrophy
in the caudate, but rather from the effects that it
entails in terms of its connectivity with cortical
regions. For instance, in a study on grey matter
changes in structural covariance networks in mani-
fest and pre-manifest individuals, Coppen et al.
[54

&&

] found that a network containing the caudate,
putamen, nucleus accumbens, pallidum, precuneus
and anterior cingulate cortex significantly corre-
lated with both motor scores and executive func-
tion scores. Moreover, a network comprising the
intracalcarine cortex, parietal and occipital regions
was also significantly correlated with cognitive
flexibility.

Apart from structural studies, the correlation
between brain functional alterations and cognitive
measures has also been investigated. In a resting-
state fMRI study, Sarappa et al. [55] reported that
higher activity in the cerebellum and the thalamus
was associated with poorer executive functions in
pre-manifest individuals. Consistent with the role of
the cerebellum in executive functions [56], the
authors claim that this result could be driven by a
compensatory increase in connectivity of the
cerebellar clusters with other brain regions. The lack
of correlation with cognitive scores in the manifest
Huntington’s disease group could indicate a plateau
in this phenomenon in more advanced stages of the
disease. Likewise, Liu et al. [57] investigated the
alterations in regional resting-state brain activity
in early stages of Huntington’s disease and observed
that reduced neural activity in the right precuneus
and increased activity in the left inferior temporal
gyrus correlated with more impaired executive func-
tions in cognitive tests.
Volume 30 � Number 4 � August 2017
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Apart from executive functions, the neurobio-
logical basis of the impairment of visuospatial abil-
ities has also been studied in Huntington’s disease.
In a structural imaging study, Labuschagne et al. [58]
examined the associations between visuospatial
cognition and brain volume and cortical thickness
in manifest and pre-manifest individuals, showing
that neurodegeneration in striatum and parieto-
occipital regions of the brain in Huntington’s dis-
ease was related to visuospatial performance.
Psychiatric domain

Little attention has been devoted to the neuro-
biological substrates of psychiatric symptoms in
Huntington’s disease in comparison with motor
and cognitive symptoms.

Psychiatric symptoms, including apathy, depres-
sion and irritability, may arise before the onset of
motor symptoms [59–61]. Among these, apathy
shows the strongest association with disease pro-
gression [33,59,62]. Although depression is a com-
mon symptom in Huntington’s disease, it is not clear
whether it is an expression of Huntington’s disease
itself, or, alternatively, is a reaction to adverse life
circumstances [63–65]. In this regard, Gregory et al.
[66

&

] investigated putative microstructural changes
associated with depression, apathy and irritability in
manifest and pre-manifest individuals, and found
that in those individuals close to onset only depres-
sion and irritability scores, but not apathy, were
associated with reduced structural connectivity,
specifically in the posterior corpus callosum and
widespread white matter, respectively.

Previous neuroimaging studies on psychiatric-
related symptoms in Huntington’s disease have
focused on emotion and reward processing. Regard-
ing emotion processing and recognition, the most
consistent findings are reduced activity and grey
matter volume in the insula, especially in the case
of disgust [67–71]. During reward processing,
reduced ventral striatum activity has been found
in Huntington’s disease [72].

Recently, using a reversal learning task during
fMRI, Nickchen et al. [73] found that the altered
reward-related activity and the grey matter density
in the left ventral striatum were associated with
worse motor abnormalities in Huntington’s disease
patients. However, the authors did not explore cor-
relations between neuroimaging and behaviour in
the reversal learning task or any psychiatric score.
Sprengelmeyer et al. [74] found that Huntington’s
disease patients with impaired trustworthiness and
dominance recognition showed reduced micro-
structural integrity (i.e. fractional anisotropy) in
the corpus callosum, frontal, parietal and occipital
1350-7540 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
regions, the insula and the cerebellum, which in
turn correlated with poorer performance in mood
and feelings recognition.
PROFILES IN HUNTINGTON’S DISEASE

Stratification of patients in different profiles using
neuroimaging techniques has been proposed in
multiple neurodegenerative, psychiatric and neuro-
developmental disorders [75–81]. In contrast, there
is a lack of neuroimaging studies that have directly
attempted to find profiles or subtypes in Hunting-
ton’s disease. However, cellular studies on post mor-
tem brain tissue of Huntington’s disease patients
have found distinctive patterns of neuronal loss
associated with motor, mood and mixed profiles
[82

&&

,83–85]. Recently, multivariate analysis tech-
niques have been employed to find subtypes in
pre-Huntington’s disease individuals using the
longitudinal trajectories of signs and symptoms of
the three domains [86

&&

]. Interestingly, more severe
motor signs were accompanied by worse cognitive
deficits, but not always by higher levels of depressive
symptoms. These findings suggest that Huntington’s
disease individuals can develop depressive symptoms
at any time, regardless of motor or cognitive impair-
ment. Furthermore, individuals with specific geno-
types that affect levels of dopaminergic release in the
prefrontal cortex are particularly affected in the rate
of progression of cognitive impairments [87].

Neuroimaging studies on Huntington’s disease
have mainly focused on characterizing the disease
by comparing patients to healthy controls rather
than on finding the source of the symptomatic
heterogeneity. Regarding individual differences in
Huntington’s disease, the focus has been mostly
placed on finding biomarkers related to age at onset.
One recent study has investigated the longitudinal
change of functional connectivity in sensorimotor,
associative and limbic cortico-striatal networks [88],
and examined correlations with clinical scores.
However, this study did not reveal circuit specificity
in the association with clinical symptoms, and
only included motor and cognitive scores, but no
psychiatric measures.
LIMITATIONS AND FUTURE DIRECTIONS

Elucidating the neurobiological source of the phe-
notypic heterogeneity observed in Huntington’s
disease would be of paramount relevance for clinical
interventions, since this would allow stratifying
patients for clinical trials to improve sensitivity.
Certain limitations of the current literature should
be considered before addressing future directions
that can open new avenues.
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Analyses of individual differences in neuroimag-
ing studies are typically conducted as a complement
to within-patient analyses and are rarely the primary
focus of a study. As a result, some of the most
common constrains that contribute to losing sensi-
tivity to individual differences are small sample sizes
and homogenous samples that include patients in
similar disease stages and exclude patients with
psychiatric illness.

Equally important is the election of the tasks or
clinical tests. Some of the clinical cognitive scores
often included in studies have a motor component,
which does not allow differentiating between cog-
nitive and motor deficits. In the case of pre-manifest
individuals, the standard tests included in the
UHDRS scale are often not sensitive enough to
detect either differences from controls or individual
differences due to ceiling effects. In this regard,
experimental tasks can offer more fine-grained
measures with more power to detect subtle changes
in performance. Motor dysfunction, though subtle
in the pre-manifest phase may be also detectable
with sensitive tests [89].

Noteworthy, most of the studies only focused
on one or two types of symptoms, usually motor
and cognitive deficits, overlooking psychiatric
symptoms. In order to find specificity in the
relation between brain alterations and symptoms,
it is important to include measures of the three
symptomatic domains in the same study. In this
regard, multivariate neuroimaging approaches
can be of great relevance. In addition, different
neuroimaging techniques could have different
sensitivity to small changes in performance. Thus,
multimodal studies can provide a more complete
picture of the neurobiological basis of individual
differences.
CONCLUSION

Recent neuroimaging studies show that motor, cog-
nitive and psychiatric impairments are associated
with structural and functional brain biomarkers in
Huntington’s disease. Although there is a great
overlap between the different regions associated
with each symptomatic domain, there is some
degree of differentiation. However, the specificity
of the regions involved remains unknown, since the
studies reviewed focused on specific regions and
symptoms. In order to tease apart the neural sub-
strates that underlie the phenotypic heterogeneity
in Huntington’s disease, multivariate approaches
should be employed in the future, combining brain
and behavioural measures related to the three
symptomatic domains.
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