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Segmentation	 of	 continuous	 experience	 into	 discrete	 events	 is	 driven	 by	 rapid	
fluctuations	 in	 encoding	 stability	 at	 context	 shifts	 (i.e.,	 event	 boundaries),	 yet	 the	
mechanisms	underlying	the	online	formation	of	event	memories	are	poorly	understood.		
We	 investigated	 the	 neural	 spatiotemporal	 similarity	 patterns	 of	 the	 scalp	
electrophysiological	(EEG)	activity	of	30	participants	watching	a	50	min	movie	and	found	
that	event	boundaries	 triggered	rapid	reinstatement	of	 the	 just-encoded	movie	event	
EEG	patterns.	We	also	found	that	the	onset	of	memory	reinstatement	at	boundary	onset	
(around	1500ms)	was	preceded	by	an	N400-like	ERP	component,	which	likely	reflects	
the	detection	of	a	context	switch	between	the	current	and	just-encoded	event.	A	data-
driven	 approach	 based	 on	 Hidden	 Markov	 Modeling	 allowed	 us	 to	 detect	 event	
boundaries	as	shifts	between	stable	patterns	of	brain	EEG	activity	during	encoding	and	
identify	 their	 reactivation	 during	 a	 free	 recall	 task.	 These	 results	 provide	 the	 first	
neurophysiological	underpinnings	for	how	the	memory	system	segments	a	continuous	
stream	of	experience	into	episodic	events.	
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Introduction	
Memory	systems	transform	the	stream	of	our	continuous	experience	into	a	sequence	of	

episodic	 memory	 units	 to	 be	 recalled	 in	 the	 future.	 While	 extensive	 research	 has	 been	

conducted	 to	 understand	 how	 the	 brain	 supports	 the	 formation	 of	 discrete,	 brief	 novel	

information,	it	 is	only	recently	that	psychologists	and	neuroscientists	have	started	exploring	

the	mechanisms	that	account	 for	episodic	memory	formation	during	a	continuous	stream	of	

experience.		

	

A	widely	accepted	view	is	that	we	naturally	segment	continuous	experience	into	events,	

and	that	event	boundaries	are	driven	by	moments	in	time	when	prediction	of	the	immediate	

future	fails	(Zack	et	al.	2007)	or	by	fluctuations	in	contextual	stability	(Clewett	&	Davachi	2017).	

Segmentation	affects	not	only	our	perception	of	the	experience,	but	its	subsequent	organization	

in	long-term	memory	(Kurby	and	Zacks,	2008;	Radvansky,	2012;	Sargent	et	al.,	2013),	such	that	

elements	within	 an	 event	 are	bound	 together	more	 cohesively	 than	elements	 across	 events	

(Ezzyat	and	Davachi,	2011;	DuBrow	and	Davachi,	2013	and	2014;	Horner	et	al.,	2016).	Human	

neuroimaging	studies	using	naturalistic	video	clips	have	set	important	findings	that	align	well	

with	these	behavioral	findings.	They	have	shown	that	a	distributed	network	of	brain	regions	

comprising	the	hippocampus	and	neocortex	are	involved	during	event	segmentation	and	that	

their	 dynamics	 during	 encoding	 provide	 a	 basis	 for	 how	we	 parse	 the	 temporally	 evolving	

environment	into	meaningful	units.	They	revealed	that	the	brain	organizes	the	ongoing	input	

into	episodic	events	by	detecting	changes	in	the	stability	of	activity	patterns.	Stable	patterns	of	

activity	at	higher-level	brain	regions	during	encoding	are	thought	to	maintain	a	stable	event	

representation	 in	 spite	 of	 fluctuations	 in	 the	 ongoing	 sensory	 input	 (Chen	 et	 al.,	 2017;	

Baldassano	et	al.,	2017).	Shifts	 in	stability	 that	coincide	with	perceived	boundaries	 induce	a	

neural	response	at	the	hippocampus	(Ben-Yakov	et	al.,	2011,	2013	and	2018;	see	Bulkin	et	al.,	

2018	 for	 similar	 findings	 in	 rodents)	 and	 the	 degree	 to	 which	 hippocampal	 activity	 at	

boundaries	 couples	with	 cortical	 patterns	 of	 activity	 predicts	 pattern	 reinstatement	 during	

later	 free	 recall	 (Baldassano	 et	 al.,	 2017),	 thereby	 indicating	 that	 the	 hippocampus	may	 be	

responsible	for	binding	cortical	representations	into	a	memory	trace	online	during	encoding	

(McClelland	 et	 al.,	 1995;	Moscovitch	 et	 al.,	 2005;	Norman	 and	O’Reilly,	 2003).	However,	 an	

important	question	remains	unanswered:	which	neural	mechanisms	support	the	binding	of	the	

encoded	information	of	an	event	upon	boundary	detection?	And	more	importantly,	how	can	we	
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investigate	 these	 neural	mechanisms	 in	 ecologically	 valid	 circumstances	 that	 can	 inform	us	

about	their	nature	in	real	life	environments?	

	

To	address	this	issue,	we	recorded	scalp	brain	electroencephalography	(EEG)	while	30	

participants	watched	a	single	50-min	movie	clip	and	asked	whether	time-resolved	fluctuations	

in	neural	similarity	elicited	during	movie	viewing	reflected	event	segmentation.	Leveraging	the	

fine-grained	temporal	resolution	of	the	EEG	signal,	we	then	tested	the	hypothesis	that	moments	

in	time	after	perceived	event	boundaries	during	movie	viewing	would	exhibit	reactivation	of	

the	 just-encoded	 episode,	 and	 that	 this	 reactivation	 would	 promote	 consolidation	 of	 the	

encoded	 event	 into	 long-term	memory.	 Indeed,	 the	 reactivation	 of	 encoded	 episodes	 upon	

boundary	detection	would	be	in	line	with	animal	research	using	EEG	recordings	showing	that	

memory	replay	of	the	just-encoded	event	promoted	its	memory	formation	and	consolidation	

(Carr	 et	 al.,	 2011)	 and	 with	 recent	 EEG	 research	 in	 humans	 that	 showed	 that	 memory	

reactivation	 at	 picture	 boundaries	 during	 sequence	 encoding	 promoted	 a	 linked	 memory	

representation	 across	 events	 (Sols	 et	 al.,	 2018).	 The	 extent	 to	 which	 boundary-triggered	

memory	reactivation	impacted	memory	formation	during	movie	viewing	would	offer	valuable	

insights	into	how	the	brain	shapes	the	unfolding	experience	into	memory	under	ecologically-

valid	situations.		

	

Results	
	

Event	segmentation	and	perceived	event	boundaries	

Six	external	participants,	who	did	not	 take	part	 in	 the	electrophysiological	 recording	

session	of	the	study,	were	asked	to	watch	the	first	episode	of	the	Sherlock	TV	series	(Baldassano	

et	al.,	2017;	Chen	et	al.,	2017),	which	 lasted	50	min.	Using	the	standard	event	segmentation	

approach	from	Newtson,	1973	and	Zacks	et	al.,	2010	(also	used	in	Baldassano	et	al.,	2017,	Chen	

et	al.,	2017;	and	Ben-Yakov	and	Henson,	2018),	participants	were	requested	to	annotate	with	

precision	the	temporal	point	at	which	they	felt	‘‘a	new	scene	is	starting;	these	are	points	in	the	

movie	when	there	is	a	major	change	in	topic,	location	or	time.”	Participants	were	also	informed	

that	each	event	should	be	between	10	seconds	and	3	minutes	long	and	we	asked	them	to	write	

down	a	short	title	for	the	event.		
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Temporal	 points	 at	 which	 at	 least	 three	 external	 raters	 coincided	 in	 annotating	 a	

boundary	were	taken	as	indicative	of	a	“real”	event	boundary	in	the	movie	(see	Methods).	This	

approach	resulted	in	an	event	segmentation	model	of	38	event	episodes	(Figure	1a),	which	was	

consistent	with	the	range	found	in	our	previous	study	(Baldassano	et	al.,	2017).	

	

Movie	free	recall	

We	then	recruited	30	different	healthy	participants	to	participate	in	an	EEG	recording	

session,	 during	 which	 they	 were	 asked	 to	 watch	 the	 same	movie.	 After	 15	min	 of	 rest,	 all	

subjects	in	this	dataset	were	asked	to	retell	the	story	they	had	just	watched,	without	any	cues	

or	stimulus.	EEG	was	also	collected	during	this	time,	and	verbal	recall	was	recorded	through	an	

audio	recorder	for	later	analysis.		

	

Participants’	memory	accuracy	indicated	they	were	able	to	recall	51.4%	of	the	encoded	

events	on	average	(STD	=	9.2%)	(Figure	1b).	Importantly,	we	also	found	that	the	temporal	order	

of	the	episodic	events	at	encoding	was	preserved	at	recall	(Figure	1c;	Supplementary	Figure	1),	

thereby	replicating	previous	results	(Chen	et	al.	2017)	that	 free	recall	 tends	to	preserve	the	

temporal	structure	of	the	encoded	memories.				

	
Figure	1.	Event	Segmentation	Model	and	memory	performance.	(a)	Schematic	representation	of	
the	event	segmentation	model	derived	from	human	annotations.	Each	color-coded	square	denotes	
events	during	the	50-min	movie	and	start/end	of	each	event	represents	the	boundary	time	points.	(b)	
Proportion	of	events	that	were	later	recalled	by	the	participants	in	our	sample	(N	=	30).	(c)	Color-
coded	temporal	order	distribution	of	movie	events	that	were	recalled	in	the	free	recall	task	for	each	
participant.		
	

Event	segmentation	model	on	the	EEG	data	

Next,	we	tested	whether	patterns	of	EEG	activity	elicited	by	the	50-min	movie	exhibited	

the	event	structure	hypothesized	by	our	model	(periods	with	stable	event	patterns	punctuated	
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by	shifts	between	events).	To	address	this	issue	at	individual	level,	we	computed	a	point-to-

point	spatiotemporal	similarity	analysis	of	the	EEG	data	during	the	50-min	movie-watching	and	

calculated	 the	degree	of	 similarity	values	within	each	of	 the	events	 (defined	by	 the	human-

annotated	event	boundaries)	(Figure	2a).	To	statistically	assess	the	extent	to	which	the	EEG	

data	 fit	 the	model,	we	 averaged	 the	 spatiotemporal	 similarity	 values	within	 each	 of	 the	 38	

events	and	tested	this	value	against	a	null	distribution	generated	by	running	the	same	analysis	

1000	times	with	a	shuffled	temporal	order	distribution	of	the	events	(Figure	2b;	see	Methods).	

This	analysis	revealed	that	22	out	of	the	30	participants	in	our	sample	showed	a	higher	degree	

of	 similarity	 values	 within	 events	 from	 the	 real	 segmentation	model	 as	 compared	 to	 their	

individual	correlation	value	cut-off	(alpha	=	0.05)	by	the	null	distribution	(Figure	2c)	and	that	

this	was	significant	at	group	level	(p	<	0.05;	Figure	2d).			

	

	
Figure	2.	EEG	neural	patterns	during	movie	watching	and	event	segmentation	
model.	 (a)	A	 temporal	 correlation	matrix	was	generated	 from	raw	EEG	data	 for	
each	of	the	participants	(an	example	of	one	selected	participant	is	depicted	in	this	
figure).	The	event	segmentation	model	from	human-labeled	boundaries	is	overlaid	
in	 white.	 (b)	 For	 each	 participant,	 the	 event	 segmentation	 model	 was	 used	 to	
calculate	the	averaged	correlation	values	for	pairs	of	timepoints	within	each	event.	
A	null	distribution	of	correlations	was	obtained	 for	random	event	boundaries	by	
shuffling	the	order	of	the	events	of	the	segmentation	model	1000	times.	(c)	Single-
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participant	distribution	of	the	difference	between	the	real	within-event	correlations	
and	 α<0.05	 thresholds	 from	 the	 null	 distribution.	 *denote	 the	 results	 were	
significant	at	group	level	(p	<	0.05).	(d)	The	red	circle	shows	the	true	participant	
average;	 green	histogram	shows	 the	null	 distribution	of	 the	participant	 average;	
grey	square	shows	mean	of	the	null	distribution.	

	

Shared	event	neural	patterns	across	participants	during	movie-watching	

Having	 shown	 that	 EEG	 patterns	 of	 neural	 activity	 were	 structured	 according	 to	 a	

general	event	segmentation	model	during	movie-watching,	we	then	tested	the	prediction	that	

within-event	EEG	patterns	should	be	shared	across	individuals	(Chen	et	al.,	2017).	To	address	

this	question	empirically,	we	 computed	Movie-Movie	 correlations	by	 comparing	patterns	of	

each	event	from	one	participant	with	the	movie	pattern	for	the	same	event	averaged	across	the	

remaining	participants.	An	averaged	correlation	value	was	obtained	for	each	participant	and	

its	statistical	significance	was	assessed	by	comparing	it	to	a	random	distribution	obtained	by	

shuffling	the	event	order	on	the	left-out	participant.	Confirming	previous	findings	on	fMRI	data	

(Chen	et	al.,	2017),	we	found	that	almost	all	of	the	participants	(29	out	of	the	30)	showed	high	

degree	of	shared	similarity	EEG	patterns	with	the	group	sample	(p	<	0.05	at	group	level)	(Figure	

3a	and	b).		

	
Figure	 3.	 Between-participant	 pattern	 similarity	 during	 movie	
viewing.	(a)	Inter-subject	correlation	value	derived	from	correlating	the	
patterns	for	each	event	in	each	individual	with	the	corresponding	event	
patterns	in	the	rest	of	the	group,	compared	to	an	α	<	0.05	threshold	from	
the	null	distribution.	*denote	the	results	were	significant	at	group	level	(p	
<	 0.05).	 (b)	 The	 red	 circle	 shows	 the	 true	 participant	 average;	 green	
histogram	 shows	 the	 null	 distribution	 of	 the	 participant	 average;	 grey	
square	shows	mean	of	the	null	distribution.	
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EEG	pattern	similarity	within	and	across	events	separated	by	boundaries	

	 An	important	assumption	derived	from	event	segmentation	theory	is	that	patterns	of	

neural	 activity	 elicited	 within	 an	 event	 should	 be	more	 stable	 than	 neural	 patterns	 across	

events,	 thereby	 indicating	 that	 event	 neural	 representations	 change	 when	 boundaries	 are	

detected.	To	test	this	prediction	in	our	data,	we	ran	a	point-to-point	spatial	similarity	analysis	

throughout	EEG	segments	of	-10	sec	to	10	seconds	of	averaged	EEG	trials	around	the	boundary	

time	point.	The	long	EEG	segments	were	then	split	into	EEG	epochs	of	5	seconds	each,	thereby	

allowing	us	to	examine	the	extent	to	which	similarity	values	were	higher	for	neural	responses	

within	events.	More	concretely,	the	similarity	analysis	was	performed	between	three	different	

pairs	of	temporal	intervals	in	the	data:	pre-boundary	time	intervals	(-10	to	-5	sec	and	-5	to	0	

sec	to	the	boundary),	between-event	time	intervals	(-5	to	0	and	0	to	5	sec	to	the	boundary)	and	

post-boundary	 time	 intervals	 (0	 to	5	 sec	and	5	 to	10	sec	 to	 the	boundary)	 (Figure	4a).	The	

resulting	similarity	values	for	each	condition	and	subject	were	then	averaged	and	differences	

were	tested	by	means	of	a	repeated	measures	ANOVA.	Notably,	the	results	from	this	analysis	

revealed	that	similarity	values	differed	between	conditions	(F(2,58)=13.94,	p	<	0.001).	Post-

hoc	paired	t-test	showed	that	within	event	similarity,	both	pre-boundary	and	post-boundary,	

were	higher	than	between	event	similarity	(t(29)	=	4.44,	p	<	0.01	and	t(29)	=	3.46,	p	<	0.01,	

respectively)	 and	 that	 similarity	 values	 within	 pre	 and	 post-boundary	 conditions	 were	

statistically	equivalent	(t(29)	=	0.83,	p	=	0.41)	(Figure	4b).		

	

	
	
Figure	4.	Neural	pattern	similarity	within	and	across	events	during	movie-watching.	(a)	A	time-
resolved	similarity	analysis	was	calculated	for	pairs	of	samples	over	20	seconds	around	boundaries,	
grouped	based	on	whether	the	two	samples	fell	before	the	boundary,	on	both	sides	of	the	boundary,	
or	 after	 the	 boundary.	 (a)	 Time-resolved	 degree	 of	 similarity	 averaged	 over	 participants	 for	 EEG	
activity	within	events	before	the	boundary,	across	events	separated	by	boundaries	and	within	events	
post-boundaries.	(b)	Participant’s	degree	of	similarity	for	each	of	the	event	conditions	depicted	in	(b).	
For	all	boxplots,	the	central	mark	is	the	median,	the	edges	of	the	box	are	the	25th	and	75th	percentiles.	
*	denotes	p	<	0.05.	
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Boundaries	trigger	rapid	reactivation	of	the	just	encoded	event	during	movie	viewing		

Leveraged	 by	 previous	 findings	 indicating	 that	 explicit	 context	 shifts	 triggered	 rapid	

reinstatement	 of	 the	 just-encoded	 picture	 event	 sequence	 and	 that	 such	 reinstatement	 at	

boundaries	promoted	the	formation	of	long-term	memory	for	that	event	(Sols	et	al.,	2017),	we	

tested	the	prediction	that	neural	reactivation	may	also	support	memory	formation	of	the	just-

encoded	event	during	much	more	subtle	transitions	between	events	during	movie-watching,	

providing	converging	evidence	that	memory	reinstatement	at	event	boundaries	facilitates	the	

storage	of	events	into	long-term	memory.	To	address	this	hypothesis,	we	computed	a	neural	

similarity	analysis	between	EEG	data	epochs	of	10	seconds	preceding	and	following	boundary	

timepoints	and	compared	the	resulting	similarity	values	for	events	that	were	later	recalled	in	

the	free	recall	task	with	events	that	were	later	forgotten.	This	analysis	revealed	that	patterns	

~1.5	seconds	post-boundary	were	significantly	more	similar	to	patterns	~5-10	seconds	pre-

boundary	when	 these	 pre-boundary	 events	 were	 later	 recalled	 (Figure	 5a).	 These	 findings	

provide	 evidence,	 for	 the	 first	 time,	 that	neural	 reactivation	 is	 a	mechanism	supporting	 the	

formation	of	event	episodic	memories	upon	boundary	detection	during	a	continuous	stream	of	

stimuli.		

	

Neural	responses	preceding	neural	reactivation	at	boundaries	

Though	memory	reactivation	was	found	to	take	place	rapidly	upon	boundary	onset	(i.e.,	

~1.5	seconds)	in	our	study,	research	on	Event-Related	Potentials	(ERPs)	have	also	revealed	the	

existence	of	even	faster	event-locked	neural	responses	predictive	of	successful	encoding	(i.e.,	

within	the	first	second	of	event	onset)	(Friedman	and	Johnson,	2000).		One	such	an	example	in	

the	 context	 of	 current	 study	 is	 the	 N400,	 which	 is	 a	 well-known	 negative	 ERP	 component	

appearing	around	~600	ms	after	stimulus	input	that	assesses	semantic	memory	states,	with	

the	amount	of	N400	amplitude	variation	revealing	how	much	of	the	information	elicited	by	that	

stimulus	is	congruent	with	the	already	active	one	(Kutas	and	Federmeier,	2011).	Thus,	given	

that	 memory	 formation	 of	 a	 meaningful	 event	 may	 depend	 on	 the	 ability	 to	 perceive	 a	

contextual	shift	at	a	boundary	(i.e.,	segmentation;	Kurby	and	Zacks,	2008),	we	asked	whether	

perceived	 boundaries	 following	 events	 that	 were	 later	 recalled	 triggered	 an	 N400-like	

component	within	a	time	window	preceding	the	onset	of	neural	reactivation.	To	address	this	

issue,	 we	 compared	 the	 ERPs	 time-locked	 to	 boundaries	 following	 events	 that	 were	 later	

recalled	and	forgotten	and	we	found	that	these	two	conditions	showed	a	differential	ERP	in	a	

time-window	of	600-1400ms	after	boundary	onset,	being	more	negative	in	polarity	after		
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Figure	5.	Rapid	neural	reinstatement	and	evoked	response	at	boundaries	
during	movie-watching.	 (a)	 Time-resolved	 degree	 of	 similarity	 across	 event	
boundaries	that	followed	events	that	were	later	recalled	or	forgotten.	Difference	
between	 similarity	 values	 for	 the	 two	 conditions	 is	 depicted	 on	 the	 right.	
Statistically	 significant	 (p	 <	 0.05	 at	 cluster	 level)	 greater	 similarity	was	 found	
across	events	for	EEG	at	around	1.5	seconds	at	boundary	onset	(indicated	with	a	
black	thick	line).	(b)	Event	Related	Potentials	(ERPs)	elicited	at	boundary	onset	
during	movie	watching	as	a	function	of	whether	the	previous	event	was	recalled	
or	forgotten	in	the	subsequent	recall	task.	Thick	lines	depicted	the	averaged	ERPs	
over	the	29	scalp	electrodes	across	participants	and	the	shaded	area	represents	
standard	error	of	the	mean	of	the	participants’	sample.	The	thick	black	line	depicts	
the	timing	of	the	significant	cluster	between	ERP	conditions.	(c)	Brain	sources	of	
the	 ERP	 difference	 observed	 at	 boundary	 onset	 between	 recall	 and	 forgotten	
conditions.			

	

boundaries	 following	 events	 that	 were	 later	 recalled	 (Figure	 5b).	 Importantly,	 this	 ERP	

difference	was	not	observed	when	the	same	analysis	was	performed	at	neural	responses	time-

locked	to	boundaries	preceding	later	recalled	and	forgotten	events	(Supplementary	Figure	2)	

and	these	 findings	could	not	be	attributed	to	a	distinct	proportion	of	events	 that	were	 later	

recalled	or	forgotten	following	the	boundary	event	either	(Supplementary	Table	1),	indicating	

that	 the	memory	 formation	 processes	 associated	 to	memory	 formation	 had	 a	 retrospective	

nature	when	boundaries	were	detected.	Furthermore,	 a	 source	brain	 analysis	 revealed	 that	
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activity	from	frontal,	parietal	and	medial	temporal	regions	were	involved	in	the	ERP	differences	

between	 conditions	 (Figure	 5c),	 matching	 brain	 regions	 found	 to	 be	 associated	with	 event	

boundary	segmentation	in	our	previous	fMRI	study	(Baldassano	et	al.,	2017).	Altogether,	these	

findings	 suggest	 that	 event	boundaries	 trigger	a	 sequence	of	neural	mechanisms	associated	

with	first	signaling	a	shift	between	previous	and	current	ongoing	event	information	followed	

by	a	rapid	reactivation	of	the	just	encoded	event.	

	

	
Figure	6.	Neural	reinstatement	at	recall.	(a)	 Illustration	of	how	two	participants’	 recall	 lengths	
varied	 for	 the	same	three	events.	Using	an	HMM	approach,	we	searched	 for	reinstatement	of	EEG	
neural	 event	 patterns	 in	 spite	 of	 these	 differences’	 length.	 (b)	 EEG	 correlations	 between	 event	
segmentation	model	patterns	during	movie	watching	and	recall	activity	derived	from	HMM-estimated	
events	were	statistically	significant	for	23	out	of	30	participants	of	the	sample.	The	difference	between	
real	correlation	and	α	<	0.05	threshold	set	by	randomly	permuting	the	order	of	the	events	at	encoding	
is	displayed	for	each	individual.	*	indicates	the	results	were	significant	at	group	level	(p	<	0.05).	(c)	
The	grey	circle	shows	the	true	participant	average;	green	histogram	shows	the	null	distribution	of	the	
participant	average;	red	square	shows	mean	of	the	null	distribution.	
	

		 Neural	reactivation	during	free	recall	

An	 intriguing	 finding	 in	our	previous	 fMRI	 study	using	 the	 same	movie	was	 that	 the	

elicited	patterns	of	neural	activity	associated	with	event	segmentation	during	encoding	were	

later	reinstated	during	free	recall	(Baldassano	et	al.,	2017).	The	extent	to	which	these	findings	

could	be	replicated	using	electrophysiological	recordings	may	be	relevant	to	open	new	venues	

for	examining	the	neural	mechanisms	supporting	event	structure	reinstatement	patterns.	To	

address	this	possibility,	we	adapted	the	approach	implemented	in	our	previous	study	based	on	

Hidden	Markov	Modelling	(HMM)	to	the	present	EEG	study	(see	Methods).	Briefly,	the	HMM	

approach	 implements	 a	 data-driven	 segmentation	 search	 and	 returns	 the	 most	 probable	

division	of	a	given	signal	to	a	given	number	of	events.	An	important	advantage	of	the	HMM	in	

the	context	of	this	study	is	that	it	provides	a	data-driven	solution	for	how	the	ongoing	pattern	

of	 neural	 activity	 may	 be	 sequenced	 into	 a	 given	 number	 of	 events.	 This	 is	 an	 attractive	
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approach	 as	 it	 allows	 searching	 for	 the	 existence	 of	 patterns	 of	 neural	 activity	 related	 to	

complex	event	sequence	structure	in	a	flexible	manner,	as	the	algorithm	can	be	applied	to	brain	

signals	of	different	length.	This	is	particularly	relevant	in	the	context	of	a	free	recall	task,	as	in	

the	current	study,	given	that	total	recall	length	and	per-event	recall	time	length	varied	across	

participants	and	within	participants	respectively	 (Figure	6a).	Thus,	 for	each	participant,	 the	

HMM	was	 used	 to	 estimate	 a	 38-event	 segmentation	 of	 the	 continuous	 EEG	 data	 acquired	

during	recall	 that	most	closely	corresponded	to	the	38	neural	event	patterns	elicited	during	

movie-watching.	 If,	 according	 to	our	previous	 findings	using	 fMRI	 (Baldassano	et	 al.,	 2017),	

participants’	recall	involved	the	reinstatement	of	neural	patterns	during	encoding,	we	would	

expect	 event-elicited	 EEG	 activity	 during	 encoding	 and	 HMM-derived	 event-elicited	 EEG	

activity	at	recall	to	be	very	similar.	To	measure	this	for	each	individual,	we	correlated	the	EEG	

patterns	elicited	during	encoding	and	recall	and	tested	whether	the	resulting	correlation	value	

was	 higher	 than	 in	 a	 null	 distribution	 obtained	 by	 shuffling	 the	 order	 of	 events	 between	

encoding	and	recall.	We	found	that	27	participants,	out	of	the	30	in	the	sample,	showed	that	

real	movie-recall	correlation	was	higher	than	the	threshold	(p	<	0.05)	and	that	this	proportion	

of	significant	findings	in	our	sample	could	not	be	attributed	to	chance	at	group	level	(p	<	0.05	

at	group	level)	(Figure	6b	and	c).	This	result	extends	previous	fMRI	findings	(Baldassano	et	al.,	

2017),	 demonstrating	 that	 memory	 recall	 is	 supported	 by	 the	 reinstatement	 of	 the	

electrophysiological	patterns	elicited	during	movie-watching.	

			

	

Discussion	

	
Our	results	provide	the	first	evidence	of	electrophysiological	signatures	related	to	how	

event	segmentation	during	movie	viewing	shapes	memory	formation.	They	show	that	patterns	

of	neural	activity	recorded	from	the	scalp	EEG	while	viewing	a	50-min	movie	fit	with	an	event	

segmentation	 model	 of	 episodic	 events	 punctuated	 by	 rapid	 transitions	 of	 content	 (i.e.,	

boundaries).	We	observed	that	these	event-specific	patterns	of	neural	activity	were	reinstated	

at	 later	 recall,	 thereby	 corroborating	 the	 idea	 that	 the	 event	 segmentation	 process	 shaped	

memory	formation	of	a	continuous	stream	of	stimuli	into	a	structured	memory	representation	

that	can	be	accessed	long-term.	Leveraged	by	the	fine-grained	temporal	resolution	of	the	EEG	

data,	we	 showed	 that	 event	memory	 formation	during	movie	 viewing	was	mediated	by	 the	

extent	to	which	it	was	rapidly	reactivated	at	event	boundaries	and	that	memory	reactivation	
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was	preceded	by	an	N400-like	ERP	component	time-locked	to	the	boundary,	which	likely	reflect	

the	effective	detection	of	a	context	switch	between	the	current	and	just-encoded	event.	These	

findings	 indicate	 that	 the	 successful	 encoding	 of	 an	 episode	 is	 regulated	 by	 two	 neural	

mechanisms	that	act	sequentially	within	the	first	~2	seconds	after	an	event	boundary.	

	

Why	 would	 memory	 reinstatement	 be	 advantageous	 during	 the	 encoding	 of	 a	

continuous	stream	of	stimuli?	Though	event	segmentation	provides	a	framework	to	examine	

how	continuous	experience	can	be	chunked	into	a	set	of	discrete	episodes	in	memory	through	

the	detection	of	event	boundaries,	it	does	not	account	for	how	this	sequence	of	episodes	can	be	

integrated	into	a	memory	structure	that	preserves	the	temporal	structure	during	later	recall.	

Memory	reinstatement	at	event	boundaries	may	represent	a	way	to	promote	temporal	event	

memory	 organization	 across	 boundaries	 as	 it	 may	 serve	 to	 promote	 the	 strengthening,	 or	

chunking,	of	 that	 just-encoded	event	but	 it	also	may	help	promote	binding	across	boundary	

episodes	as	a	result	of	the	contemporaneously	co-activation	of	the	past	and	present	events	(Sols	

et	al.,	2017).	The	extent	to	which	memory	reactivation	at	event	boundaries	serves	to	promote	

the	encoding	of	unique	events	into	memory,	the	integration	of	different	events	into	a	temporally	

organized	memory	structure	or	both	is	difficult	to	disambiguate	in	our	study	as	participants	

memory	accuracy	was	obtained	through	a	free	recall	task,	which	relies	on	retrieval	processes	

heavily	dependent	on	clustering	properties	of	the	encoded	material,	such	as	semantic	similarity	

or	temporal	proximity	(Polyn	et	al.,	2009).			

	

Speculatively,	 it	could	be	argued	that	memory	reactivation	at	event	boundaries	could	

theoretically	 represent	 a	 way	 to	 account	 for	 how	 different	 event	 episodes	 that	 shared	

contextual	semantic	properties	can	be	integrated.	In	support	of	this	hypothesis,	previous	fMRI	

studies	 have	 shown	 that	 temporally	 extended	 events	 sharing	 contextual	 information	 were	

evaluated	as	if	they	appeared	closer	in	time	during	recall	and	that	this	was	related	to	increased	

hippocampal	 similarity	 between	 these	 events	 during	 encoding	 (Ezzyat	 and	 Davachi,	 2014).	

Interestingly,	 this	 effect	 was	 only	 observed	 for	 when	 events	 that	 shared	 contexts	 were	

separated	by	event	boundaries	during	 their	 encoding,	 suggesting	 the	possibility	 that	neural	

mechanisms	triggered	at	boundaries	were	at	least	partially	responsible	for	memory	integration	

(e.g.,	memory	reactivation).	Another	set	of	research	studies	have	emphasized	the	relevance	of	

memory	 reactivation	 to	 explain	 how	 different	 episodes	 are	 integrated	 as	 a	 function	 of	 the	

degree	of	 their	overlapping	content	 to	allow	generalization	(Schlichting	and	Preston,	2015).	
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These	studies	have	shown	that	memory	reactivation	is	elicited	when	elements	of	the	experience	

partially	 mismatch	 with	 stored	 memory	 representations,	 supporting	 integrative	 encoding	

online	(Shohamy	and	Wagner,	2008).		

	

An	open	question	is	which	specific	mechanisms	trigger	memory	reinstatement	at	event	

boundaries.	Advancing	on	this	issue	is	not	trivial	given	the	diverse	ranges	of	stimulus	used	in	

event	cognition	literature	(e.g.,	text	narratives	(Zwaan,	1996),	short	video	clips	(Ben-Yakov	et	

al.,	 2011	 and	 2013)	 or	 item	 sequences	 (Dubrow	 and	 Davachi,	 2013)).	 In	 an	 attempt	 to	

accommodate	 the	 literature	 on	 this	 topic,	 Clewet	 and	Davachi	 (2018)	 suggested	 that	 event	

boundaries	 represent	 moment-to-moment	 fluctuations	 in	 external	 and	 internal	 contextual	

states	 during	 continuous	 encoding.	 In	 our	 study,	 such	 fluctuations	 could	 be	 understood	 as	

moments	 in	 time	when	 an	 internal	 representation	derived	 from	an	 accumulated	 contextual	

encoding	 suddenly	 shifts	 at	 the	 start	 of	 a	 novel	 scene	 with	 a	 change	 in	 spatial	 location,	

characters	or	goals.	Interestingly,	we	found	that	these	moments	in	time	were	followed	by	an	

N400-like	ERP	component,	specifically	for	when	the	previous	event	was	later	recalled	but	not	

for	those	that	were	forgotten.	The	fact	that	this	specific	ERP	response	preceded	the	onset	of	the	

memory	reactivation	after	an	event	boundary	lends	support	to	the	notion	that	it	could	reflect	a	

neural	process	that	may	be	necessary	to	trigger	neural	reactivation.	However,	this	idea	should	

be	 taken	cautiously	as	our	data	do	not	provide	a	quantifiable	dependency	between	 the	 two	

other	than	differences	in	their	temporal	onset.	Nevertheless,	our	results	offer	valuable	testable	

predictions	 for	 future	 research	 on	 how	 perception	 and	memory	 interact	 online	 during	 the	

encoding	of	ecologically-valid	stimulation	protocols.		

	

In	a	series	of	fMRI	experiments,	Ben-Yakov	et	al.	(2011,	2013)	revealed	the	importance	

of	studying	event	offset	brain	activity	in	humans	at	the	end	of	movie	clips	to	understand	how	

episodic	 memories	 are	 formed	 during	 the	 stream	 of	 a	 continuous	 audiovisual	 stimulation.	

These	studies,	together	with	those	studying	abrupt	switches	between	stimulus	category	and	

task	 (DuBrow	 and	Davachi,	 2016),	 and	 recent	 studies	 of	 event	 boundaries	 in	movies	 (Ben-

Yakov	et	al.,	2018;	Baldassano	et	al.,	2017),	offered	converging	evidence	for	the	specificity	and	

sensitivity	of	the	coupling	of	the	hippocampus	to	event	boundaries	during	movie	viewing.	In	

the	 current	 study,	 we	 found	 that	 the	 brain	 sources	 of	 the	 N400-like	 ERP	 associated	 with	

memory	formation	at	boundaries	of	the	just-encoded	event	episode	included	frontal,	parietal	

and	medial	temporal	lobe	regions.	These	regions	highly	overlapped	with	brain	regions	found	in	
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our	previous	fMRI	findings	of	hippocampally-linked	event	boundaries	(Baldassano	et	al.,	2017).	

The	similarity	of	these	sources	represents	strong	evidence	that	our	approach	was	suitable	for	

identifying	 the	 engagement	 of	 the	 same	 brain	 network	 and	 informing	 about	 the	 temporal	

properties	of	their	engagement	using	non-invasive	electrophysiological	recordings.		

	

In	naturalistic	scenarios,	the	study	of	the	recollection	of	memories	of	one’s	past	may	vary	

substantially	across	individuals	and	within	subjects	as	a	function	of	task	contexts.	This	creates	

an	important	challenge	in	our	search	for	the	neural	underpinnings	supporting	the	remembering	

of	autobiographical	memories.	The	implementation	of	data-driven	modeling	approaches,	such	

as	the	ones	offered	by	HMM	used	in	the	current	study,	may	foster	interesting	possibilities	in	

this	endeavor.	Indeed,	being	able	to	identify	the	reinstatement	of	memory	events	from	a	50-

min	movie	viewing	using	HMM	extends	previous	fMRI	findings	(Baldassano	et	al.,	2017).	Our	

work	is,	however,	the	first	to	show	that	HMM	can	be	used	to	model	electrophysiological	signals,	

thereby	proving	its	usefulness	to	test	predictions	of	how	perception	and	memory	are	supported	

by	 the	brain	 that	 rely	on	 fine-grained	 temporal	dynamic	resolution,	 such	as	whether	neural	

oscillations	at	different	frequencies	support	the	hierarchical	structure	found	in	Baldassano	et	

al.	(2017),	or	whether	specific	oscillatory	activity	related	to	memory	formation	and	retrieval	

(i.e.,	theta	frequency	band,	3-8Hz)	play	a	role	at	event	boundaries.		

	

Understanding	 how	 memories	 are	 formed	 and	 structured	 in	 real	 life	 requires	 the	

characterization	of	neural	mechanisms	that	take	place	online,	during	the	ongoing	encoding	of	a	

continuous	 naturalistic	 stimuli,	 as	 our	 experience	 unfolds	 over	 time.	 Investigating	 how	

memories	are	 formed	during	audiovisual	narratives	such	as	 long	movie	clips	may	provide	a	

valuable	 approach	 to	 bring	 testable	 predictions	 derived	 from	 animal	 and	 theoretical	

neuroscience	 into	 real	 life	 settings.	 The	 current	 experiment	 assessed	 whether	 memory	

reinstatement,	a	neural	mechanism	critical	for	memory	formation	and	consolidation,	took	place	

under	these	ecologically-valid	experimental	circumstances.	By	showing	that	this	is	the	case,	our	

findings	offer	valuable	insights	into	how	the	brain	shapes	the	unfolding	experience	into	long-

term	memory	that	can	be	generalized	to	real	life.		
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Methods		

	
Participant	sample.	Thirty-three	Spanish	speakers	(30	right-handed,	20	females,	age	range	

18-46,	 mean	 =	 22)	 participated	 for	 pay	 (10€/h).	 Participants	 were	 recruited	 from	 the	

University	of	Barcelona	and	the	broader	community.	All	participants	were	healthy	and	did	not	

consume	 psychoactive	 substances.	 Informed	 consent	 was	 obtained	 from	 participants	 in	

accordance	with	procedures	approved	by	the	Ethics	Committee	of	the	University	of	Barcelona.	

Data	from	two	participants	were	discarded	due	to	falling	asleep	during	the	experiment,	and	one	

due	to	too	much	muscular	artifact	in	the	data.	Thus,	the	final	sample	of	participants	included	in	

the	study	was	thirty.	

	

Experimental	Design.	Our	primary	dataset	consisted	of	30	participants	who	watched	the	first	

50	minutes	of	the	first	episode	of	BBC’s	Sherlock	in	Spanish	and	were	then	asked	to	freely	recall	

the	episode	without	cues,	while	being	recorded	using	an	audio	recorder.	The	audio	files	were	

later	analyzed	in	order	to	access	participants’	length	and	richness	of	the	recall,	with	total	recall	

times	ranging	from	6	min	to	44	min	(and	a	mean	of	15	min).	At	the	beginning	of	the	movie,	a	30	

s	audiovisual	cartoon	(“Let's	All	Go	to	the	Lobby”)	was	presented	to	set	participants	attention.	

The	experimental	design	was	implemented	on	ePrime	2.0	(Psychology	Software	Tools,	Inc.)	

	

EEG	 recording	 and	 preprocessing.	 EEG	 was	 recorded	 using	 a	 32-channel	 system	 at	 a	

sampling	 rate	 of	 500	 Hz,	 using	 a	 BrainAmp	 amplifier	 and	 tin	 electrodes	 mounted	 in	 an	

electrocap	(Electro-Cap	International)	located	at	29	standard	positions	(Fp1/2,	Fz,	F7/8,	F3/4,	

Fc1/2	Fc5/6,	Cz,	C3/4,	T3/4,	Cp1/2,	Cp5/6,	Pz,	P3/4,	T5/6,	PO1/2,	O1/2)	and	at	the	left	and	

right	mastoids.	An	electrode	placed	at	the	lateral	outer	canthus	of	the	right	eye	served	as	an	

online	 reference.	 EEG	was	 re-referenced	 offline	 to	 the	 right	 and	 left	mastoids.	 Vertical	 eye	

movements	were	monitored	with	an	electrode	at	the	infraorbital	ridge	of	the	right	eye	and	an	

independent	component	analysis	(ICA)	was	run	on	MATLAB’s	EEGlab	toolbox	(Delorme	et	al.,	

2004)	to	correct	for	eye	movements	and	remove	extremely	noisy	components	(no	more	than	6	

components	were	removed).	

	

Using	the	EEGLAB	toolbox	a	low	pass	filter	of	20Hz	was	applied	in	order	to	reduce	the	presence	

of	muscular	artifacts	(Perez	et	al.,	2017).	Data	corresponding	to	encoding	(e.g.	movie	viewing)	

and	 recall	was	 down-sampled	 by	 segmenting	 the	 EEG	 into	 bins	 of	 averaged	 data	 from	 one	
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hundred	 sample	 points	 (i.e.,	 200	 milliseconds).	 We	 choose	 this	 interval	 as	 a	 compromise	

between	preserving	data	structure	and	reducing	computational	time	in	our	analyses.		

	

Event	 boundary	 annotations	 by	 human	 observers.	We	 asked	 6	 external	 participants	 to	

watch	the	movie	and	write	down	every	time	they	thought	there	was	a	new	event,	given	the	

following	instructions:	“Write	down	the	times	at	which	you	feel	like	there	is	a	major	change	in	

topic,	location,	time,	etc.	Each	event	should	be	more	a	less	between	10	seconds	and	3	minutes	

long.	Don't	forget	to	write	a	small	description	of	what	was	happening	on	that	specific	event.”	

With	the	participants’	boundary	annotations	we	 looked	for	 those	boundary	time	points	 that	

were	consistent	across	observers.	To	find	a	statistical	threshold	of	how	many	observers	should	

coincide	in	a	given	time	point	to	be	different	from	chance	in	our	data,	we	shuffled	the	number	

of	 observations	 1000	 times	 and	 created	 a	 null	 distribution	 of	 the	 resulting	 coincident	 time	

points.	An	a =	0.05	as	a	cutoff	for	significance	indicated	that	boundary	time	points	at	which	at	

least	three	observers	coincided	in	(considering	3	seconds	as	possible	window	of	coincidence)	

could	not	be	explained	by	chance.	The	 final	human	annotations	model	was	composed	of	38	

events	which	 is	 a	 number	 in	 accordance	 to	 the	 range	 found	 on	 the	 Chen	 et	 al.	 (2017)	 and	

Baldassano	et	al.	(2017)	studies.	

	

Verbal	recall	analysis.	The	audio	files	recorded	during	the	free	verbal	recall	were	analyzed	by	

a	 lab	member	which	was	a	native	Spanish	speaker,	using	 the	 list	of	events	 from	the	human	

annotations	model.	An	event	was	counted	as	recalled	if	the	participant	described	any	part	of	

the	event	and	were	counted	as	out	of	order	if	they	were	initially	skipped	and	later	described	in	

the	narrative.		

	

Finding	event	structure	in	the	EEG	data.	To	validate	the	event	segmentation	model	extracted	

from	human	annotations	on	the	EEG	data	collected	from	the	primary	sample	in	the	study,	we	

generated,	for	each	of	the	individuals,	a	temporal	correlation	matrix	computed	by	correlating	

the	29	electrodes	with	the	same	29	electrodes	for	each	of	the	time	points.	Next,	we	averaged	

the	correlation	values	within	each	of	the	38	events	and	ran	a	permutation	test	(N	=	1000)	with	

null	boundaries	picked	by	shuffling	the	temporal	order	of	the	events	while	maintaining	their	

lengths.	The	within	event	correlation	values	were	compared	to	the	permuted	values	using	an	

alpha	of	0.05	as	a	cutoff	for	significance	(see	Figure	2b).	
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Shared	 event	 neural	 patterns	 across	 individuals	 during	 movie	 viewing.	 Following	

previous	fMRI	findings	(Chen	et	al.,	2017),	we	examined	whether	neural	patterns	elicited	by	

events	during	movie	viewing	were	similar	across	 individuals	 in	our	sample.	To	address	 this	

issue,	we	computed	Movie-Movie	correlations	by	comparing	patterns	of	each	event	from	one	

participant	 with	 the	 movie	 pattern	 for	 the	 same	 event	 averaged	 across	 the	 remaining	

participants.	 This	 resulted	 in	 an	 across-participants	 similarity	 analysis.	 To	 assess	 if	 the	

correlation	values	were	statistically	significant	a	permutation	test	(N	=	1000)	was	computed,	

using	 an	 alpha	 of	 0.05	 as	 a	 cutoff	 for	 significance,	 by	 shuffling	 the	 event	 correspondence	

between	the	held-out	and	remaining	participants.	

EEG	pattern	similarity	within	and	across	events.	A	similarity	analysis	was	calculated	for	EEG	

neural	activity	before	and	after	boundaries	during	movie	viewing.	The	similarity	analysis	was	

performed	 at	 individual	 level,	 and	 included	 spatial	 (i.e.,	 scalp	 voltages	 from	 all	 the	 29	

electrodes),	and	the	temporal	features,	which	were	selected	using	a	200	ms	sliding	window	of	

the	 resulting	 z-transformed	 signal	 obtained	 from	 averaging	 the	 EEG	 trials.	 The	 similarity	

analysis	 was	 calculated	 using	 Pearson	 correlation	 coefficients,	 which	 are	 insensitive	 to	 the	

absolute	amplitude	and	variance	of	the	EEG	response.		

 
The	similarity	analysis	was	computed	on	EEG	segments	of	10	seconds	pre-	and	post-

boundaries	 identified	 in	 the	event	 segmentation	model.	To	ensure	 that	differences	between	

before	 and	 after	 the	 boundary	 were	 not	 arising	 just	 due	 to	 intrinsic	 temporal	 contiguity	

properties	of	the	EEG	signal,	we	first	split	pre-	and	post-boundary	10-second	EEG	segments	in	

two	equal	EEG	vectors	of	5	seconds.	Thus,	pre-boundary	event	correlations	were	performed	

between	the	interval	-10	s	to	-5	s	and	the	interval	-5	s	to	0	s	before	the	boundary.	Between-

event	correlations	were	performed	between	-5	s	to	0	and	0	to	5	s,	were	0	corresponded	to	the	

boundary.	Post-boundary	event	correlations	were	performed	on	EEG	data	from	the	interval	0	

to	5	s	and	the	interval	5	s	to	10	s	after	the	boundary.	Point-to-point	correlation	values	were	

then	 averaged	 for	 each	 of	 the	 3	 conditions	 and	 differences	 were	 statistically	 compared	 by	

means	of	a	repeated	measures	ANOVA	including	type	of	event	as	a	3-level	factor	(Pre-boundary,	

between-event,	and	post-boundary).	Statistical	significance	was	set	at	p	<	0.05.	A	paired-sample	

t-test	was	used	to	test	for	statistical	significance	between	condition	pairs.	

	

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/511782doi: bioRxiv preprint first posted online Jan. 4, 2019; 

http://dx.doi.org/10.1101/511782
http://creativecommons.org/licenses/by/4.0/


18	
 

An	EEG	similarity	analysis	was	also	performed	on	20-second	windows	of	averaged	EEG	

trial	data	as	a	function	of	whether	events	preceding	a	boundary	were	later	recalled	or	forgotten.	

The	 10	 seconds	 EEG	 signal	 included	 10	 seconds	 before	 boundary	 and	 10	 seconds	 after	

boundary.	Similarity	analysis	was	implemented	by	correlating	point-to-point	the	spatial	EEG	

features	surrounding	the	boundary.	To	account	for	differences	between	recalled	and	forgotten	

conditions	 a	 cluster-based	 permutation	 test	was	 used	 (Maris	 and	 Oostenvelt,	 2007),	which	

identifies	clusters	of	significant	points	in	the	resulting	2D	matrix	in	a	data-driven	manner	and	

addresses	the	multiple-comparison	problem	by	employing	a	nonparametric	statistical	method	

based	on	cluster-level	 randomization	 testing	 to	 control	 the	 family-wise	error	 rate.	 Statistics	

were	computed	for	every	time	point,	and	the	time	points	whose	statistical	values	were	larger	

than	a	 threshold	(p	<	0.05,	 two-tail)	were	selected	and	clustered	 into	connected	sets	on	the	

basis	of	x,y	adjacency	in	the	2D	matrix.	The	observed	cluster-level	statistics	were	calculated	by	

taking	the	sum	of	the	statistical	values	within	a	cluster.	Then,	condition	labels	were	permuted	

1000	times	to	simulate	the	null	hypothesis	and	the	maximum	cluster	statistic	was	chosen	to	

construct	 a	 distribution	 of	 the	 cluster-level	 statistics	 under	 the	 null	 hypothesis.	 The	

nonparametric	statistical	test	was	obtained	by	calculating	the	proportion	of	randomized	test	

statistics	that	exceeded	the	observed	cluster-level	statistics.		

	

EEG	 evoked	 responses	 at	 boundary	 onset.	 Event-Related	 Potentials	 (ERPs)	 at	 boundary	

onset	were	calculated	for	each	individual	as	a	function	of	whether	events	were	later	recalled	or	

forgotten	in	the	free	recall	task.	To	obtain	the	ERPs,	we	first	applied	a	low-pass	filter	of	12	Hz	

to	the	none-down-sampled	EEG	data.	Then,	epochs	of	-1000	to	2000	ms	were	chosen	around	

each	of	 the	boundary	 time	points	determined	 from	the	event	segmentation	model.	The	pre-

boundary	interval	(-100	to	0	ms)	was	used	for	baseline	correction.		ERP	differences	between	

recalled	 and	 forgotten	 conditions	were	 investigated	 starting	 at	 0	ms	 to	2000	ms	 after	 each	

boundary	onset.	Statistical	significance	of	the	differences	between	conditions	was	assessed	by	

a	cluster-based	permutation	test.		

	

Brain	sources	of	ERPs.	Low-Resolution	Tomography	Analysis	 (sLORETA)	 (Pascual-Marqui,	

2002)	was	used	to	reconstruct	the	source	space	for	ERP	differences	at	boundary	onset.	This	

method	 performs	 localization	 inference	 based	 on	 images	 of	 standardized	 current	 density,	

which	 corresponds	 to	 the	 3D	 distribution	 of	 electric	 neuronal	 activity	 that	 has	 maximum	

similarity	 (i.e.	 maximum	 synchronization),	 in	 terms	 of	 orientation	 and	 strength,	 between	
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neighboring	neuronal	populations	(represented	by	adjacent	voxels).	LORETA	was	calculated	

separately	for	each	participant’s	averaged	ERP	triggered	by	boundaries	that	followed	events	

that	were	later	recalled	and	forgotten.	Source	reconstruction	for	each	condition	was	compared	

and	results	were	displayed	by	means	of	t-values	(paired	t-test,	one-tail).		

	

Reinstatement	of	EEG	event	patterns	during	free	recall.	We	adapted	the	HMM	approach	

used	in	Baldassano	et	al.	(2017)	and	tested	the	extent	to	which	it	identified	EEG-based	latent-

states	during	recall	according	 to	 the	event	segmentation	model	constructed	 through	human	

annotations	during	movie-watching.		

	

	The	model	is	a	variant	of	an	HMM	in	which	the	latent	variables	are	the	event	labels	st	for	

each	timepoint	t	and	the	spatial	signatures	mk	(brain	activity	patterns	across	all	EEG	channels)	

for	each	event	k. From	the	observed	brain	activities	bt we	infer	both	st and	mk.	The	model	is	set	

to	assume	that,	for	all	the	participants,	the	event	starts	in	s1=1 and	ends	with	sT=K, where	T	is	

the	total	number	of	time	points	and	K	 is	the	total	number	of	events.	We	assume	that	in	each	

time	point	we	can	either	advance	to	the	next	state	or	remain	in	the	same	one,	which	results	in	

a	transition	matrix	where	all	elements	are	zero	except	for	the	diagonal	and	the	adjacent	off-

diagonal.	

	

An	 isotropic	 Gaussian	model	 is	 used	 to	 compute	 the	 observation	model	 so	 that	 the	

probability	that	a	given	observation,	bt,	is	created	by	a	state	st=k	can	be	given	by:	

	

𝑃(𝑏$|𝑠$ = 𝑘) = 	
1

√2𝜋𝜎0
	𝑒23

4
0567‖9(:;)29(<=)‖

0
0 (1) 

	

where	z()	denotes	the	z-score	function.	The	z-scoring	of	the	brain	observations	and	the	mean	

activity	patterns	result	in	a	proportionality	between	the	log	probability	of	observing	brain	state	

bt	in	an	event	with	signature	mk and	the	Pearson	correlation	between	bt	and	mk	plus	a	constant	

offset:	

	
log 𝑃(𝑏$|𝑠$ = 𝑘) ∝ 𝑟(𝑏$,𝑚E) (2) 

	

To	 ensure	 that	 all	 states	 are	 visited,	 the	 observation	 probabilities	 𝑃(𝑏$|𝑠$ = 𝑘) are	

modified	by	setting	𝑃(𝑏F|𝑠F = 𝑘) = 0,	for	all 𝑘 ≠ 𝐾	so	that,	on	the	final	time	point,	only	the	final	

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/511782doi: bioRxiv preprint first posted online Jan. 4, 2019; 

http://dx.doi.org/10.1101/511782
http://creativecommons.org/licenses/by/4.0/


20	
 

state	K	could	have	generated	the	data.	To	ensure	that	all	possible	event	segmentations	have	the	

same	 prior	 probability,	 a	 dummy	 absorbing	 state	 K+1	 is	 created,	 so	 that	 the	 transition	

probabilities	for	state	K	are	identical	to	those	for	previous	states.	We	set	𝑃(𝑏$|𝑠$ = 𝐾 + 1) = 0	so	

that	this	state	cannot	actually	be	used.	

	

We	 used	 the	 mean	 EEG	 patterns	 of	 each	 of	 the	 events	 identified	 in	 the	 event	

segmentation	model	 during	movie	watching	 to	model	 the	 EEG	 data	 during	 recall.	 For	 each	

participant,	the	HMM	was	applied	to	the	continuous	recall	EEG	data	to	obtain	a	probabilistic	

assignment	 of	 latent	 event	 states	 consistent	 with	 the	 event	 segmentation	 model	 obtained	

during	movie	watching.	 The	 resulting	 probabilities	𝑃(𝑠$ = 𝑘)	were	 then	 used	 to	 identify	 the	

event	transition	points	during	recall,	as	timepoints	when	the	most	likely	event	changed.		We	

then	tested	the	extent	to	which	HMM-based	EEG	patterns	elicited	during	movie	watching	were	

similar	to	those	estimated	by	HMM	search	during	recall.	As	in	the	previous	analysis,	we	ran	an	

event-to-event	 correlation	 analysis	 between	 movie	 and	 recall	 and	 calculated	 an	 averaged	

correlation	 measure,	 as	 a	 proxy	 of	 the	 overall	 degree	 of	 similarity	 over	 the	 entire	 event	

segmentation	 model	 between	 the	 two	 sets	 of	 data.	 To	 assess	 for	 statistical	 significance	 at	

individual	level,	we	created	a	null	distribution	by	shuffling	the	movie	events,	then	running	the	

HMM	on	this	shuffled	order	and	finally	computing	the	correlation	between	the	shuffled	movie	

events	and	the	HMM-identified	recall.	This	procedure	was	applied	1000	times	to	create	a	null	

distribution	of	findings	and	used	to	assess	a	statistical	significance	when	compared	with	the	

real	correlation	values	using	an	alpha	of	0.05	as	a	cut-off.	

	

	
Author	contributions	
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Supplementary	Information	
	
	

	

	

Supplementary	Table	1.	Distribution	of	recalled	and	forgotten	events.		We	created	a	table	

of	contingency	for	each	of	the	participants	to	assess	the	possibility	that	recalled	or	forgotten	

events	during	movie-watching	were	non-uniformly	preceded	or	followed	by	either	recalled	or	

forgotten	events.	Discarding	this	possibility	is	relevant	to	interpret	our	similarity	(Figure	5a)	

and	ERP	(Figure	5b	and	c)	findings	at	boundaries	as	specifically	related	to	recall	or	forgotten	in	

the	later	free	recall	task.	For	each	participant,	we	performed	a	Fisher’s	exact	test	to	statistically	

assess	for	an	unequal	distribution	of	events.	This	analysis,	however,	resulted	non-significant	(p	

>	0.05)	for	all	participants,	 thereby	indicating	that	the	distribution	of	recalled	and	forgotten	

trials	was	uniform.	
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Supplementary	 Figure	 1.	 Preservation	 of	 event	 temporal	 order	 during	 free	 recall.	To	

statistically	assess	whether	the	order	of	events	during	movie-watching	was	preserved	during	

free	recall,	we	computed	Kendall	rank	correlation	coefficients	between	each	individual	event	

temporal	 order	 and	 a	 simulated	 correct	 linear	 order.	 For	 all	 participants	 the	 Kendall	 tau	

coefficient	was	positive	and	close	to	1,	indicating	that	the	encoded	temporal	order	of	the	events	

was	highly	preserved	during	their	recall.	The	central	mark	is	the	median,	the	edges	of	the	box	

are	the	25th	and	75th	percentiles.			***	denotes	p	<	0.001.		

	

	

	
Supplementary	 Figure	 2.	Event	 Related	 Potentials	 (ERPs)	 at	 boundaries.	 (a)	 Point-to-

point	ERP	difference	at	boundary	onset	following	events	that	were	later	recalled	or	forgotten.	

Differences	are	expressed	in	t-values	(paired	t-test).	(b)	Cluster	of	spatiotemporal	contiguous	

points	that	resulted	significant	(p	<	0.05)	when	the	two	ERP	conditions	were	compared	with	a	

cluster-based	 permutation	 test	 (see	 Methods).	 (c)	 Scalp	 ERP	 representation	 of	 the	 ERP	

difference	between	the	two	conditions	averaged	over	time-points	within	the	significant	cluster.	

(d)	 ERPs	 elicited	 at	 boundaries	 preceding	 events	 that	 were	 later	 recalled	 or	 forgotten.	 No	

differences	were	found	between	the	two	conditions	(p	>	0.05,	cluster-based	permutation	test).	
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