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The ability to synchronize a motor output to an auditory 
input—for example, tapping or dancing to music with a 
groove—is a basic trait present in humans from birth1, with 

important cognitive implications2,3. From a phylogenetic perspec-
tive, spontaneous synchronization (without explicit training) to an 
external rhythm is argued to be a unique characteristic of vocal-
learning species, including humans4. Study of this distinctive attri-
bute has typically focused on how body movements are entrained 
by non-speech signals—for example, music5 or a beat6. However, in 
this context, one foundational question has not been systematically 
investigated: do humans spontaneously align their speech motor 
output to auditory speech input? Resolving the role of audio–motor 
synchronization7–9 in the context of speech processing is a critical 
step for characterization of the complex functional and structural 
neural architecture of language.

To address these questions, we designed a simple behavioral pro-
tocol to explore the spontaneous synchronization of speech (SSS 
test). The results demonstrate, in contrast to the previous literature, 
that a substantial part of the population does not show speech-to-
speech synchronization. Thus, we further explored the functional 
and structural brain correlates associated with absence of syn-
chrony. Finally, we turned to the key issue of whether the behav-
ioral findings on audio–motor synchronization and their neural 
substrate extend to tasks related to more typical questions regarding 
speech processing and language learning.

Results
Spontaneous speech synchronization reveals a bimodal distri-
bution. Participants (N = 84) completed two behavioral blocks, 
each lasting 1 min, of listening to a rhythmic train of syllables at 
4.5 syllables/s—the characteristic speech rate across languages10,11—
while concurrently whispering the syllable ‘tah’ (Fig. 1a). At the end 
of each block, participants indicated whether a given target syllable 

was presented. Crucially, participants were instructed to correctly 
recall the syllables; there was no explicit instruction to synchro-
nize utterances to the external rate. We first examined the degree 
of synchronization between the produced utterances and the input 
signal by computing the phase-locking value (PLV) for their enve-
lopes around the given syllable rate (4.5 Hz; Fig. 1a). Surprisingly, 
participants’ PLVs yielded a bimodal distribution (Fig. 1b), suggest-
ing segregation of our cohort into distinct populations of high and 
low synchronizers (Nhigh = 43, Nlow = 41). No difference was found 
between the groups in terms of language background, age or gender. 
However, high synchronizers showed, overall, more years of musical 
training than low synchronizers (Mann–Whitney–Wilcoxon test, 
two-sided P = 0.0033; Supplementary Fig. 1). Still, musical expe-
rience by itself did not segregate the population into two groups 
(Supplementary Fig. 1f).

Next, we analyzed the distribution of phase differences between 
perceived and produced syllables for the high synchronizers. We 
found a nonuniform distribution (Nhigh = 43; Rayleigh test, two-
sided P < 0.001; Fig. 1c) with the phase lags concentrated around 
0 (95% confidence interval (CI) = −0.21, 0.26): high synchroniz-
ers adjusted their production to be in phase with the perceived  
syllables. The average spectra of the produced speech envelopes also 
exhibited striking differences between the groups. High synchroniz-
ers showed a pronounced peak at the given syllable rate, indicating 
high stability in maintaining the rhythm. The low-synchrony group 
was less stable, exhibiting a broader peak (Fig. 1d). Two additional 
experiments were conducted to further assess empirically whether 
synchrony of the produced utterances was indeed driven by an 
interaction between the perceived and produced speech rhythms 
(rather than being related to ability to maintain a tempo). First, 
a subset of the participants (Nhigh = 13, Nlow = 12) completed an 
additional block of whispering ‘tah’ while listening to white noise 
(no-rhythm condition). Speech rhythmicity was strongly reduced 
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in high synchronizers in the no-rhythm condition, relative to the 
rhythmic one, and remained unchanged in low synchronizers  
(Fig. 1e). Second, a new cohort of participants completed a modi-
fied version of the SSS test in which the rate of the perceived  
syllables was gradually increased (see Methods). Notably, the result-
ing distribution also displayed two peaks under this condition 
(N = 55; Supplementary Fig. 2). High synchronizers adjusted their 
speech output to (multiple) changes in the tempo of the perceived 
speech (Supplementary Fig. 2b). This result provides additional 
compelling evidence that a subgroup of the population can adapt 
a produced rhythm to a perceived one. Furthermore, in most cases, 
participants were not aware of the shift in rate (Supplementary  
Fig. 2c), highlighting the unconscious and automatic nature of the 
phenomenon. These combined findings support the conjecture that 
participants exhibited two qualitatively different behaviors: whereas 
the speech output of high synchronizers was entrained by the exter-
nal auditory speech rate, low synchronizers showed no interaction 
between the produced and perceived speech rhythms.

We next determined that subjects’ degree of audio–motor syn-
chrony was stable over time, suggesting that synchronization type 
is a consistent individual trait. This was demonstrated by the 
highly correlated PLVs, both across blocks within a session (N = 84; 
Spearman correlation, r = 0.86, P < 0.001; Fig. 1f) and across ses-
sions distant in time (34 participants repeated the test 1 month later; 
Spearman correlation, r = 0.78, P < 0.001; Fig. 1g). This stability 
over time proves the SSS test’s reliability in clustering participants 
into high- and low-synchrony groups via a straightforward measure 
of phase locking to a regular pacing signal.

To further verify that the phenomenon is robust and replicable, 
we developed and conducted an online version of the SSS test for 
both the stable and accelerated syllable rates using the Amazon 
Mechanical Turk (AMT) platform. These two additional replica-
tions (N = 144 for the stable version and N = 60 for the accelerated 
version) underscore the reliability of the bimodal distribution under 
less controlled conditions (see Supplementary Fig. 3a for results 

with the stable rate and Supplementary Fig. 4a for those with the 
accelerated rate) and also allowed us to explore differences between 
groups in perception and production abilities. From a perceptual 
standpoint, the high synchronizers who completed the online ver-
sion of the stable SSS test (N = 144) were marginally better than 
the low synchronizers (Mann–Whitney–Wilcoxon test, two-sided 

Fig. 1 | Spontaneous speech synchronization reveals a bimodal 
distribution. a, SSS test: example of the perceived (top) and produced 
(bottom) signals. Produced signals were independently recorded for each 
participant (N = 84). Green lines represent the envelope, bandpass filtered 
from 3.5–5.5 Hz. To eliminate auditory interference resulting from listeners’ 
own speech output, participants wore foam earplugs and whispered softly. 
b, PLV histogram (average across blocks). Colored lines represent normal 
distributions fitted to each of the two clusters obtained by a k-means  
algorithm (the number of participants in each cluster was Nhigh = 43 
(orange) and Nlow = 41 (blue)). Participants subsequently completing 
neurophysiology and neuroimaging sessions were randomly selected from 
1σ below or above the mean (indicated by the blue and orange dashed 
lines). c, Phase histogram for the lag between the perceived and produced 
syllables. The histogram was computed only for the high-synchrony group; 
low-synchrony participants were not synchronized, and it was thus not 
possible to define a phase lag. d, Average spectra of the envelopes of 
utterances (Nhigh = 43, Nlow = 41). Shaded regions represent s.d. e, Average 
spectra for a subgroup of participants (Nhigh = 13, Nlow = 12). Dark and light 
lines correspond to the no-rhythm and rhythm conditions, respectively. 
A bar on top indicates a significant difference between the conditions 
(Wilcoxon signed-rank test, two-sided P < 0.05, FDR corrected). f, PLV 
scatterplot of correlation between the first and second blocks (Spearman 
correlation, r = 0.86, P < 0.001). Dots represent individual subjects 
(N = 84), and colored dots represent participants selected to complete 
subsequent neurophysiology and neuroimaging sessions (Nhigh = 18, 
Nlow = 19). g, Scatterplot of mean PLVs, showing the correlation between the 
first and second sessions (conducted 1 month apart; Spearman correlation, 
r = 0.78, P < 0.001). In all panels, orange and blue correspond to high and 
low synchronizers, respectively.
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P = 0.093; Supplementary Fig. 3b). From a production standpoint, 
the low synchronizers were marginally less accurate (with no cor-
rection for multiple comparisons) in keeping a precise syllable rate 
(4.5 syllables/s) without feedback (on white noise): they tended to 
produce lower syllable rates (Supplementary Fig. 3c). Although 
these results imply that the two populations—identified by our 
1-min test relying on speech audio–motor interactions—also differ, 
however modestly, at other levels of perception or production abil-
ity, further work is needed to delineate the extent of the predictive 
power of our test with regard to other capabilities.

In light of the reliability of our findings, we next pursued the  
following question: does the clear grouping based on the straightfor-
ward behavioral paradigm reflect neural properties and behavioral 
consequences that have broader relevance? These behavioral data 
invite the hypothesis that functional and/or structural brain differ-
ences underlie the segregation into high versus low synchronizers. 
To address this question, we next acquired both neurophysiologi-
cal and structural data from a subgroup from the original cohort 
(Nhigh = 18, Nlow = 19; Fig. 1f).

Neural distinction between groups: neurophysiological data. In 
a magnetoencephalography (MEG) experiment, participants lis-
tened to rhythmic trains of syllables (4.5 syllables/s), now passively 
(without whispering). They were instructed to listen attentively to 
the syllables and to indicate after each stream whether a given set 
of syllables had been presented. Task performace was above chance 
level, veryfing subject’s attention to the syllables (N = 37; Wilcoxon 
signed-rank test, two-sided P = 0.011; Supplementary Fig. 5). 
However, there was not a significant difference in performance 
between the groups (Nhigh = 18, Nlow = 19; Mann–Whitney–Wilcoxon 
test, two-sided P = 0.96). Caution is required in interpreting this 
behavioral result, however, because syllable recognition was rather 
poor for the entire participant cohort. This derives from the  
fact that we designed an extremely difficult task (12 synthesized  
syllables, co-articulated for 2 min) to maximize participants’ atten-
tion during the 2-min syllable perception task. We then computed 
the PLV between elicited brain activity and the envelope of the audi-
tory stimuli (brain-to-stimulus synchrony; Fig. 2a) in the frequency 
band corresponding to the perceived syllable rate (4.5 ± 0.5 Hz). 
Given that group segregation relied on a speech audio–motor task, 
we centered our analyses in bilateral frontal and temporal regions 
implicated in speech production and perception, respectively. A 
first comparison between the groups restricted to frontal regions of 
interest (ROIs) revealed that high synchronizers showed enhanced 
brain-to-stimulus synchrony in left inferior and middle frontal gyri, 
more precisely, in left Brodmann areas 44, 45, 46 and 9 (Nhigh = 18, 
Nlow = 19; Mann–Whitney–Wilcoxon test, two-sided P < 0.05, false-
discovery rate (FDR) corrected; Fig. 2b and Supplementary Fig. 6a).  
Interestingly, previous data showed that, during overt speech pro-
duction, control of temporal speech patterns is likely governed 
by these regions12,13. Thus, our results suggest that areas related to 
speech timing during production are also implicated during speech 
perception to track the perceived syllable rate (note that no motor 
production occurred during the MEG session).

In contrast, the same analysis performed on temporal ROIs yielded 
no significant differences between the groups (Supplementary Fig. 6).  
However, the asymmetry of the entrainment in early auditory 
regions was significantly different between the groups (see Methods 
and Supplementary Fig. 7).

Structural distinction between groups: anatomical connectivity  
data. Having observed neurophysiological differences between 
the groups, we then acquired diffusion-weighted MRI (DW-MRI) 
data from the same cohort to quantify potential differences in the 
white matter pathways connecting the frontal and auditory regions 
that might distinguish the groups in terms of brain-to-stimulus  

synchrony. Excitingly, high synchronizers showed enhanced micro-
structural properties in the white matter neighboring the audi-
tory cortex (Fig. 3a). Specifically, we found a distinct lateralization 
pattern in a white matter cluster (Nhigh = 18, Nlow = 18; family-wise 
error (FWE)-corrected at the peak voxel, two-sided P = 0.024;  
Fig. 3b), likely part of the arcuate fasciculus14–16, that differentiated 
the groups, with high synchronizers showing significantly greater 
left lateralization. No significant clusters were obtained in ventral 
white matter pathways connecting frontal and temporo-occipital 
regions (see Methods). Notably, this structural difference relates to 
both the auditory (Supplementary Fig. 7b) and frontal (Fig. 2b) neu-
rophysiological results: increased leftward lateralization in the white 
matter was related to higher brain-to-stimulus synchrony in left 
frontal regions (Fig. 3c) and to more symmetrical auditory entrain-
ment (Supplementary Fig. 7c). Virtual dissections (tractography) 
further showed that the volume of the left arcuate (but not of the left 
inferior longitudinal or the inferior fronto-occipital fasciculi, which 
were also dissected as a control) not only differentiated between the 
groups but was also related to left frontal neurophysiological brain-
to-stimulus synchrony (see Methods and Supplementary Fig. 8).

Spontaneous speech synchronization test predicts word learning. 
Previous research documents that the early stages of word learning 
capitalize on interaction between auditory and frontal regions and 
the white matter pathways connecting them15. To test for a princi-
pled link between these observations and our simple behavioral test, 
a new sample of participants (N = 44) was recruited to complete the 
SSS test as well as a word-form-learning task. More precisely, because 
we expected that speech synchronization should most clearly ben-
efit segmentation abilities, a classical statistical learning paradigm 
was chosen17,18. In this paradigm, participants listened for 2 min to a 
continuous repetition of four trisyllabic pseudo-words, which were 
randomly concatenated without silence gaps between them. Next, 
they completed a testing phase that assessed whether they correctly 
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Fig. 2 | Neural distinction between groups: neurophysiological data. a, 
Activity from a high synchronizer, generated in Brodmann area 44 (BA44) 
(top) during passive listening to the stimulus (bottom; the stimulus 
envelope is shown in green). Similar signals were obtained for the other 
high synchronizers (N = 17). b, Brain-to-stimulus synchronization. Left: 
ROI comprising bilateral precentral, middle frontal and inferior frontal gyri. 
Right: brain surface map showing PLV differences between the groups 
(Nhigh = 18, Nlow = 19; Mann–Whitney–Wilcoxon test, two-sided P < 0.05, 
FDR corrected).
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segmented the pseudo-words. The histogram of the PLVs obtained 
with the SSS test for this smaller group also displayed two peaks, 
replicating the bimodal distribution of the original cohort (Fig. 4a). 
When splitting this new population into high and low synchroniz-
ers (using the median PLV of the first cohort; Fig. 4a), we found 
that high synchronizers had a significant learning advantage in the 
phonological word-learning task (Nhigh = 24, Nlow = 20; r = 0.4, rank-
biserial correlation; Mann–Whitney–Wilcoxon test, two-sided 
P = 0.024; Fig. 4b). This learning benefit was also replicated in the 
additional cohort of participants who completed an online version 
of the word-learning task in addition to the online and accelerated 
version of the SSS test (Nhigh = 25, Nlow = 35; r = 0.37, rank-biserial 
correlation; Mann–Whitney–Wilcoxon test, two-sided P = 0.015; 
Supplementary Fig. 4b). We hypothesize that (i) in line with previ-
ous work8,19 the increment of synchronization in the frontal region, 
enhanced in high synchronizers, facilitates parsing of syllables by 
aligning attention to their onset; (ii) better parsing improves extrac-
tion of the statistical relationship between syllables; and, (iii) pre-
diction of one syllable following another likewise helps to create a 
better phonological trace of whole words. In conclusion, enhanced 
audio–motor interaction as measured with our approach (the SSS 
test) not only is reflected in the functional and structural properties 
of frontal and temporal areas but also has compelling consequences 
for language learning.

Discussion
The combined behavioral, neurophysiological and neuroanatomi-
cal results reveal a fundamental phenomenon: whereas some indi-
viduals are compelled to spontaneously align their speech output 

to speech input, others remain impervious to external rhythm (see 
Supplementary Fig. 9 for a depiction of the joint bimodal distribu-
tion of all our experiments using the SSS test). We speculate that 
such distinct populations of high and low synchronizers emerge 
from the spontaneous nature of the synchrony induced by the SSS 
test (in which the goal of the task is orthogonal to synchronization). 
This contrasts with previous research showing more homogenous 
entrainment patterns when synchronization to an external auditory 
signal is explicitly requested2,20. The behavioral pattern we have dis-
covered correlates with neurophysiological and structural features 
within key elements of the speech brain network21–23, including 
production areas (inferior frontal gyrus), perception areas (early 
auditory cortex) and the white matter connecting them (see the 
tractography analysis in Supplementary Fig. 8)24. Excitingly, the 
fact that our results scale up to an ecologically relevant task18, word 
learning in the context of speech segmentation, has theoretical and 
practical implications for how individual differences in cognition 
and learning are understood and studied25,26.

Our ability to speak relies on a widely distributed and highly 
interconnected audio–motor network27,28. We hypothesize that an 
interplay between structural and physiological predispositions 
(roughly, nature) and experience-dependent tuning (roughly, nur-
ture) can generate moderate modifications to the components of 
the speech audio–motor network that, owing to the coarseness of 
its connections29, result in large consequences at the functional 
and behavioral levels. Specifically, a subtle enhancement in the 
structure of the white matter connecting auditory and motor 
regions could improve the synchronization (flow of information30) 
between temporal and frontal areas, in turn eliciting the effects 
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observed in these experiments. Previous research has shown that 
white matter located in the same region as the cluster highlighted 
by our study undergoes microstructural changes through musical 
training9,31. In line with these studies, we found that high synchro-
nizers had, overall, more years of musical training than low syn-
chronizers. However, in our work, musical training on its own did 
not follow a bimodal distribution, suggesting that musical experi-
ence is one of many factors defining group membership as a high 
or low synchronizer.

In summary, we introduce a deceptively simple behavioral task 
(the SSS test) capitalizing on individual differences that turn out to 
be predictive of audio–motor synchronization, neurophysiological 
function, brain anatomy and performance on an ecologically rel-
evant word-learning task. Use of such a test can help to better char-
acterize individual performance, leading to new discoveries related 
to speech processing and language learning that could previously 
have been masked by pooling populations with substantially differ-
ent neural and behavioral attributes.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-019-0353-z.
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Fig. 4 | Spontaneous speech synchronization test predicts word learning. 
a, SSS test outcome. Histogram of PLVs between the envelopes of the 
perceived and produced speech signals, bandpass filtered at 3.5–5.5 Hz. The 
median of the first cohort’s distribution is indicated (black line; individuals 
above and below this line were labeled as high and low synchronizers, 
respectively). b, Percentage of correct answers for the statistical word-
learning task (Nhigh = 24, Nlow = 20; Mann–Whitney-–Wilcoxon test, two-
sided P = 0.024). Black lines represent the mean across participants and 
shaded regions represent s.d.; dots correspond to individual participants. 
The green dashed line indicates chance level. *P < 0.05.
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Methods
Participants. A first cohort of 84 participants initially completed the SSS test  
(32 males; mean age, 28 years; age range, 19 to 55 years). From this, a subgroup of  
37 subjects (right handed; 18 males; mean age, 30 years; age range, 21 to 55 years) 
also underwent the MEG and DW-MRI protocols. The original subgroup 
comprised four additional participants, but these had to be removed owing to 
artifactual MEG (three participants) or DW-MRI (one participant) data. The MEG 
session took place at least 4 d after the DW-MRI session. Both protocols were 
completed within 1 month of the SSS test.

A second cohort of 44 individuals (11 males; mean age, 21 years; age range,  
19 to 31 years) completed the SSS test and the word-learning task.

A third cohort of 62 participants completed the accelerated version of the 
SSS test. Seven participants were removed because they spoke loudly instead of 
whispering or they stopped whispering for time periods longer than 4 s. The data 
from 55 participants (19 males; mean age, 23 years; age range, 18 to 36 years) were 
analyzed.

Two additional cohorts, one of 200 participants and one of 100 participants, 
completed the online version of the regular and accelerated SSS tests, respectively. 
56 participants from the regular group and 40 participants from the accelerated 
group were removed for non-optimal conditions in their recordings (noisy 
recording, participant did not use headphones, participant spoke loudly instead 
of whispering or stopped whispering for time periods longer than 4 s). The final 
number of participants who submitted to the analyses was 144 (80 males; mean 
age, 34 years; age range, 19 to 55 years) for the regular SSS test and 60 (37 males; 
mean age, 35 years; age range, 19 to 51 years) for the accelerated SSS test.

All participants were native English speakers with self-reported normal 
hearing and no neurological deficits. They were paid for taking part in the study 
and provided written informed consent. All protocols were approved by the 
local institutional review board (New York University’s Committee on Activities 
Involving Human Subjects).

No statistical methods were used to predetermine sample sizes, but our sample 
sizes are similar to those reported in previous publications7,15,17.

Statistical analyses. Data distribution was not formally tested. Instead, 
nonparametric Mann–Whitney–Wilcoxon and Wilcoxon signed-rank tests were 
used for between- and within-subject comparisons, respectively. We controlled 
for multiple comparisons by using FDR correction (the only exception was TBSS 
white matter analyses, which used an FWE correction based on threshold-free 
cluster enhancement and a nonparametric permutation test). Nonparametric 
Spearman’s rank correlations were used to assess the relationship between 
variables. In addition, we used the Robust Correlation Toolbox32 to ensure the 
robustness of the relationship between the structural and neurophysiological data. 
In particular, we used Spearman skipped correlations33,34 with percentile bootstrap 
95% confidence intervals (calculated by resampling pairs of observations) for each 
correlation. Skipped correlations involve multivariate outlier detection and provide 
a more robust measure of correlation35. Bootstrap confidence intervals provide an 
additional way to test whether two variables are truly correlated; if the confidence 
intervals include 0, the null hypothesis cannot be rejected32.

Effect sizes were calculated using rank-biserial correlations, which can be 
read as a Spearman correlation coefficient36 or as the difference between the 
proportion of favorable and unfavorable evidence37. In our study, all effect sizes are 
above r = 0.36. An r value of 0.36 means that the favorable evidence outweighs the 
unfavorable evidence by 68% to 32%.

Data collection and analysis were performed with blinding to the conditions 
of the experiments for the behavioral tests but not for the MEG and structural 
analyses, as subjects had already been divided into high and low synchronizers.

Stimulus presentation order was randomized for all experiments with more 
than one stimulus.

Phase-locking value. Throughout the study, the synchronization between two 
signals was measured by the PLV between them. PLV was computed using the 
formula
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where t is the discretized time, T is the total number of time points, and θ1 and θ2 
are the phase of the first and second signals, respectively.

Stimuli. Five sets of syllables (G1 to G5) were created to be used in the MEG task. 
Each set consisted of 12 distinct syllables (unique consonant–vowel combinations) 
handpicked to maximize variability within and between sets. G5 was used in the 
SSS test, and the remaining four sets (G1 to G4) were used to create the stimuli 
(word streams, words and part-words) for the word-learning task.

Random syllable streams were created by randomly combining the syllables of 
a set, with no gap between them and with the sole constraint that the same syllable 
not be repeated consecutively. The total duration of the random syllable streams 
was 60 s for the SSS test (G5) and 120 s for the MEG task (G1 to G5).

For the word-learning task, we created four trisyllabic pseudo-words 
(henceforth, words) per set (G1 to G4) by unique combination of all the 
component syllables. This resulted in four ‘languages’ (henceforth, languages L1  
to L4), each comprising four words. To improve learnability, we consulted the 
Irvine Phonotactic Online Dictionary (IPhOD version 2.0; http://www.IPhOD.com/)  
for minimum word-average biphoneme and positional probabilities. For the 
exposure phase, the four words of a language were randomly combined to form a 
2-min-long stream for each language with no gaps, ensuring an equal number of 
non-consecutive repetitions per word. For the test phase, in addition to the words, 
we also created for each language all possible part-words by the combination of  
the final syllable of a word with the first two syllables of the remaining words  
(12 part-words per language). Written renderings and cross-ratings of all words 
and part-words were provided independently by five native speakers of American 
English. The written forms with the highest convergence were selected for visual 
presentation concurrent with the audio in the test phase of the word-learning task.

Random syllable streams, word streams, words and part-words were all 
converted to .wav files for auditory playback by using the MBROLA text-to-speech 
synthesizer with the American Male Voice diphone database (US2) at 16 kHz38. 
All phonemes were equal in pitch (200 Hz), pitch rise and fall (with the maximum 
at 50% of the phoneme), and duration, which was set to 111 ms to satisfy a 
presentation rate of 4.5 syllables/s throughout the entire study.

All auditory stimuli were presented binaurally at a mean sound pressure  
of 75 dB, via tubephones (E-A-RTONE 3A 50 Ω, Etymotic Research) attached to 
E-A-RLINK foam earplugs inserted into the ear canal.

SSS test. Participants (for the in-lab experiment in a sound isolation booth, seated 
in front of a PC with a microphone placed close to their mouth) completed three 
experimental steps:

 1. Volume adjustment: subjects listened to the train of random syllables played 
backward while whispering ‘tah’ and increased the audio volume until they 
could not perceive their own voice;

 2. Steady repetition example: an audio with a continuous repetition of the 
syllable ‘tah’ (recorded by a female speaker, manipulated to last 222 ms and 
concatenated to produce a rate of 4.5 syllables/s) was delivered through the 
earplug tubephones for 10 s. Subsequently, participants were instructed to 
whisper ‘tah’ at the same pace for 10 s. We primed the participants at the 
desired frequency, as previous research showed that synchronization to an 
external stimulation occurs when there is a close match between internal and 
external frequencies39,40;

 3. Syllable perception task: participants attended to the rhythmic syllable stream 
while steadily whispering ‘tah’. After the presentation, they had to indicate 
whether a given set of target syllables were presented. For each run, four 
target syllables were randomly selected from a pool of eight (half of them 
were part of the stream). Importantly, participants were not explicitly in-
structed to synchronize to the external audio. According to the instructions, 
the assignment was to recall correctly the syllables and the ‘tah’ articulation 
was intended just to increase the difficulty of the task. By this, we encour-
aged attention to the audio while the goal of the task remained orthogonal 
to the synchronization (implicit synchronization). A subset of participants, 
randomly selected from the pool, completed an additional step at the end 
of the syllable perception task (Nhigh = 13, Nlow = 12). During this step, they 
steadily whispered ‘tah’ for 1 min while listening to white noise (no-rhythm 
condition).

After the last step, participants filled out a questionnaire indicating age, 
handedness, gender, musical experience and spoken languages. Subsequently, they 
repeated steps 2 and 3. In this way, each participant completed two runs of the 
syllable perception task, which we named blocks 1 and 2.

A subgroup of participants, randomly selected from the original cohort, 
completed the whole experiment again 1 month after the first session (N = 34).

SSS test, accelerated version. The protocol for the accelerated version was the 
same as for the regular SSS test, but we modified the auditory stimulus as follows: 
we progressively increased the syllable rate from 4.3 to 4.7 syllables/s, using steps 
of 0.1 syllables/s; each rate was kept constant for 60 syllables with the exception 
of the last one, which remained constant until the end of the audio, which in this 
case was set to 70 s (Supplementary Fig. 2b). As in the regular version of the test, 
each participant completed two blocks. Once they finished, they indicated whether 
they perceived an increment, a decrement or no change in the rate of the presented 
syllables for each block. As for the stable-rate version of the SSS test, we computed 
the PLV between the envelopes of the produced utterances and input signal.

Online version. An online version of the SSS test (for both normal and accelerated 
versions of the paradigm) was developed using oTree, a Python-based framework 
for the development of controlled experiments on online platforms41. The online 
version mainly followed the same structure as the in-lab one (volume adjustment, 
steady repetition, syllable perception), but with some changes: (i) a microphone 
test phase was included before the volume adjustment phase and (ii) several 
restrictions were placed to ensure that the participants actually did the task  
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(for example, during steady repetition, a participant could not continue to the next 
page until they had heard the whole 10-s-long recording and recorded themself for 
another 10 s). All recordings were manually checked for errors (for example, not 
using headphones, speaking loudly instead of whispering, etc.). Instructions were 
exactly the same as those for the in-lab version.

Half of participants who completed the online version of the stable-rate SSS 
test also completed a rhythm perception test, while the other half undertook a 
rhythm production assessment. The perception task was the one described by 
Huss and colleagues42. Participants were presented with pairs of tunes (36 pairs, 
18 the same and 18 different) and had to make a same/different judgment. In the 
different pairs, there was a mismatch in the duration of the accented note. For 
the production task, participants repeated the steady repetition example step and 
were instructed to keep whispering ‘tah’ at the same pace for 1 min while listening 
to white noise. The difference between this task and the no-rhythm condition wa 
s that all participants were primed again, before the 1 min of whispering under 
white noise, and explicitly instructed to keep the tempo. These tasks were always 
performed after the SSS test and were also programmed by using oTree.

Tasks developed with oTree can be deployed into AMT, a crowdsourcing 
platform that allows for acquisition of large datasets in a rapid, affordable, 
anonymous and easily replicable manner. Note that recent research has replicated 
a number of tasks from experimental psychology (for example, Stroop, Flanker, 
subliminal priming and category learning, among others) by using AMT43. The 
online SSS test was presented to AMT participants as an HTML webpage that ran 
in each participant’s web browser. AMT participants were first presented with a 
summary of the task and then with an informed consent page. Upon acceptance, 
instructions for the task were presented.

Synchrony measurement. The degree of synchronization was measured by the 
PLV between the envelope of the produced speech and the cochlear envelope of 
the rhythmic syllable stream. The envelope was estimated as the absolute value 
of the Hilbert transform of the signal. Spectrograms of the auditory stimuli 
were computed using the NSL (Neural Systems Laboratory) Auditory Model 
MATLAB toolbox44. This toolbox filters the signal in a specific set of frequency 
bands, emulating the auditory filters applied by the cochlea (yielding what we 
call auditory channels), and computes their envelopes. The stimulus cochlear 
envelopes were calculated by adding the auditory channels between 180 and 
7,246 Hz. Envelopes were resampled at 100 Hz, filtered between 3.5 and 5.5 Hz, 
and their phases were extracted by means of the Hilbert transform. The PLV was 
computed for windows of 5 s in length with an overlap of 2 s. The results for all 
time windows were averaged within each stimulus presentation, providing one 
PLV per block.

We computed the within- and across-session PLV Spearman rank correlation. 
For within-session blocks, correlation was computed between the PLV of block 
1 and the PLV of block 2. For across-session computation, the mean PLV across 
blocks for the first session was correlated with the one obtained for the session 
completed 1 month later.

Definition of high and low synchronizers. We applied a k-means clustering 
algorithm45 to the PLVs averaged across blocks, by using a squared Euclidean 
distance metric and two clusters. For each cluster (lower and higher), we fitted 
a normal distribution (mean μ and s.d. σ). Next, we defined low and high 
thresholds as Tlow = μlower + σlower and Thigh = μhigher – σhigher. The groups of low and high 
synchronizers that underwent the MEG and DW-MRI sessions were randomly 
selected from the set of participants whose mean PLV across blocks was below Tlow 
and above Thigh, respectively.

Spectral analysis. We computed the discrete Fourier transform (DFT) for the 
envelope of the produced speech for each block without any windowing. We 
focused our analysis between 1 and 10 Hz. Thus, we kept the power values within 
this frequency window and they were normalized to sum 1. Spectra across blocks 
belonging to the same condition (no rhythm/rhythm) were averaged.

To assess differences between conditions (no rhythm/rhythm), within each 
group (high and low synchronizers), nonparametric paired Wilcoxon signed-rank 
tests were calculated for the power values at each frequency. Significant results are 
reported at FDR-corrected P < 0.05.

Neurophysiological study. Task. Once in the MEG system, participants 
completed five runs of the syllable perception task. Importantly, however, and 
in contrast to the SSS test, participants passively listened to the syllable streams 
in silence (without whispering). Each run involved a different random syllable 
stream corresponding to syllable sets G1 to G5. The order of presentation was 
counterbalanced across participants. Random syllable streams for the MEG 
experiment were 120 s in duration. Experimental runs were always preceded by 
20 s of silence. Participants were instructed to listen attentively to the syllables and 
to indicate in the test phase after each stream was heard whether a given set of 
syllables had been presented. As in the SSS test, each test phase consisted of eight 
trials. In each, a syllable from a pool of eight (four presented and four foils) was 
randomly selected and presented visually. Participants indicated their decision by 
pressing a button with their right hand (index finger: yes, the syllable was present; 

middle finger: no, the syllable was not present). The following trial started between 
900 and 1,100 ms after the response, for which there were no time constraints.

Data acquisition and processing. Neuromagnetic responses were recorded with a 
1,000-Hz sampling rate using a 157-channel whole-head axial gradiometer system 
(KIT, Kanazawa Institute of Technology, Japan) in a magnetically shielded room. 
Five electromagnetic coils were attached to the subject’s head to monitor head 
position during MEG recordings. The coils were localized to the MEG sensors 
at the beginning of the experiment and before the last two blocks of the main 
experiment. The position of the coils with respect to three anatomical landmarks—
the nasion, and left and right tragus—was determined using 3D digitizer software 
(Source Signal Imaging) and digitizing hardware (Polhemus). This measurement 
allowed co-registration of subjects’ anatomical MRI with the MEG data. An online 
bandpass filter between 1 and 200 Hz and a notch filter at 60 Hz were applied to 
the MEG recordings.

Data processing and analyses were conducted using custom MATLAB code 
and the FieldTrip toolbox46. For each participant’s dataset, noisy channels were 
visually rejected. Two procedures were applied to the continuous MEG recordings. 
First, a least-squares projection was fitted to the data from the 2 min of empty 
room recorded at the end of each session. The corresponding component was 
removed from the recordings47. Second, the environmental magnetic field, 
measured with three reference sensors located away from the participant’s head, 
was regressed out from the MEG signals using time-shifted PCA48. The MEG 
signals were then detrended and artifacts related to eyeblinks and heartbeats were 
removed by using independent-component analysis.

Source reconstruction. To reconstruct the brain activity generating the magnetic 
fields recorded by the MEG sensors, we used a linearly constrained minimum-
variance beamforming approach. Using the subject’s anatomical MRI, we first 
reconstructed the brain surface. Then, the brain volume was filled with a 1-cm 
grid, which was normalized to the MNI template (Montreal Neurological 
Institute brain) using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The lead fields 
were calculated for each grid point49, and spatial filters were computed using the 
covariance matrix between all sensor pairs for all trials. Finally, the spatial filters 
were applied to the signals from sensors to reconstruct the time series for each 
source inside the brain (point on the grid).

Brain-to-stimulus synchronization. The degree of synchrony was measured by 
the PLV between brain activity and the cochlear envelope of the perceived train 
of syllables. Signals from sources were resampled at 100 Hz, filtered between 3.5 
and 5.5 Hz, and their phases were extracted by means of the Hilbert transform. 
The PLV was computed for windows of 1 s in duration with an overlap of 0.5 s. 
The results for all time windows were averaged across the total presentation of the 
stimuli, obtaining one PLV per source and per subject.

PLVs were averaged for sources within the same region according to the 
Brainnetome Atlas50 (38 mean PLV values were computed for the frontal ROI 
and 24 were computed for the temporal ROI; see below). ROI selection was 
theoretically driven, based on our initial hypothesis related to the audio–motor 
nature of the behavioral task. In other words, because segregation of participants 
relied on an audio–motor task, we focused our analyses on two broad regions 
comprising the cortical areas related to speech perception and production:

 1. Bilateral frontal ROI: this was composed of 19 regions in each hemisphere, 
38 in total. It comprised the middle, precentral and inferior frontal gyri from 
both hemispheres. Specifically, the selected Brainnetome Atlas regions were 
as follows: dorsal BA 9/46, inferior frontal junction, BA 46, ventral BA 9/46, 
ventro-lateral BA 8, ventro-lateral BA 6, lateral BA 10, dorsal BA 44, inferior 
frontal sulcus, caudal BA 45, rostral BA 45, opercular BA 44, ventral BA 44, 
head and face region BA 4, caudal dorso-lateral BA 6, upper limb region BA 4,  
trunk region BA 4, tongue and larynx region BA 4, and caudal ventro-lateral 
BA 6 (Fig. 2b);

 2. Bilateral temporal ROI: this consisted of 12 regions in each hemisphere, 
24 in total. This ROI covered bilaterally the superior, middle and posterior 
temporal lobe (medial BA 38, BA 41/42, TE 1.0/1.2, caudal BA 22, lateral BA 
38, rostral BA 22, caudal BA 21, rostral BA 21, dorsolateral BA 37, anterior 
superior temporal sulcus (STS), rostro-posterior STS and caudo-posterior 
STS; Supplementary Fig. 6b).

Because a preference of right auditory areas for frequencies matching the 
syllable rate has been theoretically proposed51,52 and experimentally reported53–55, 
we also explored the degree of asymmetry in auditory entrainment to speech. On 
the basis of the previous literature53,54, more restricted ROIs were chosen for this 
analysis. We defined early auditory regions as follows: BA 41/42, TE 1.0 and TE 
1.2 (Supplementary Fig. 7a). Next, we calculated brain-to-stimulus synchrony 
within right and left early auditory areas for each group and calculated their 
neurophysiological asymmetry: (PLVright – PLVleft)/0.5(PLVright + PLVleft).

To assess differences between groups (high and low synchronizers), 
nonparametric independent-samples Mann–Whitney–Wilcoxon tests were 
calculated for the PLVs of all regions within the corresponding ROI. Significant 
results are reported at FDR-corrected P < 0.05 within the ROI. To explore auditory 
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brain-to-stimulus synchrony between hemispheres within groups, a nonparametric 
paired Wilcoxon signed-rank test was computed.

For the frontal ROI, 8 of the 38 regions showed a significant difference between 
the groups, FDR corrected for multiple comparisons. All significant regions were 
located in the left hemisphere, specifically left: dorsal BA 9/46, ventral BA 9/46, 
inferior frontal junction, dorsal BA 44, ventral BA 44, opercular BA 44, inferior 
frontal sulcus and caudal BA 45.

Anatomical connectivity study. Scanning parameters and diffusion measures.  
DW-MRI data were acquired on a 3T scanner (Siemens Prisma 3T MRI scanner) 
using a 64-channel phased-array head coil, at the Center for Brain Imaging  
(New York University). Diffusion images were acquired with an EPI sequence 
optimized for DTI-MRI of white matter (81 axial slices; TR, 4,150 ms; TE, 85.2 ms; 
flip angle, 90°; slice thickness, 1.5 mm; acquisition matrix, 150 × 152; voxel size, 
1.5 × 1.5 × 1.5 mm3). One run with 10 interleaved non-diffusion-weighted volumes 
and 128 diffusion-weighted volumes (128 directions; b values of 1,500 s/mm2) was 
acquired. To allow precise source reconstruction of the neurophysiological data, 
a high-resolution T1 MPRAGE image was also acquired during this MRI session 
(TR, 2,400 ms; TE, 2.24 ms; flip angle, 8°; voxel size, 0.80 × 0.80 × 0.80 mm3;  
256 sagittal slices; acquisition matrix, 320 × 300).

DTI-MRI analysis. Diffusion data processing started by correcting for eddy current 
distortions and head motion by using FMRIB’s Diffusion Toolbox (FDT), which  
is part of the FMRIB Software Library (FSL 5.0.1; http://www.fmrib.ox.ac.uk/
fsl/; ref. 56). Subsequently, the gradient matrix was rotated to correct for head 
movement, to provide a more accurate estimate of diffusion tensor orientations, 
by using the fdt_rotate_bvecs program included in FSL57. Brain extraction was 
performed by using the Brain Extraction Tool58, which is also part of the FSL 
distribution. Analysis continued with reconstruction of the diffusion tensors by 
using the linear least-squares algorithm included in Diffusion Toolkit 0.6.2.259. 
Finally, FA and radial diffusivity (RD) maps for each participant were calculated 
using the eigenvalues extracted from the diffusion tensors.

Voxel-based analyses of FA and RD maps were performed with TBSS60. FA 
maps from all participants were registered to the FMRIB58_FA template (MNI152 
space and 1 × 1 × 1 mm3) using the nonlinear registration tool61. These registered 
FA maps were first averaged to create a mean FA volume. Then, a mean FA 
skeleton was derived, which represents the centers of all tracts common to all 
participants in the study. Each participant’s aligned FA data were then projected 
onto this skeleton by searching for the highest FA value within a search space 
perpendicular to each voxel of the mean skeleton. This process was repeated for the 
RD maps by applying the transformations previously calculated with the FA maps. 
This resulted in individual FA and RD skeletons for each participant. In addition, 
given that laterality62—especially of the white matter paths connecting auditory 
and motor regions—is also related to cognitive function, laterality maps were also 
created. First, a symmetrical skeleton was created by using the script tbss_sym. 
Then, FA and RD data were projected onto this symmetrical skeleton, with left-
hemispheric values subtracted from right-hemispheric ones. Thus, laterality FA 
and RD maps were also obtained (note that these maps reflect right minus left 
values; for the sake of clarity, results are shown on the left hemisphere; Fig. 3). A 
total of four analyses were performed (FA and RD, and FA and RD lateralization).

Finally, to assess white matter differences between high and low synchronizers, 
independent-samples t-tests were calculated for the FA and RD skeletons and 
laterality maps. For a more theoretically driven analysis, we focused on regions that 
are part of the dorsal and ventral pathways for language processing. In particular, 
we used an ROI approach to focus on the white matter pathways connecting 
auditory with frontal and motor regions—the arcuate fasciculus21. We also included 
in the analyses the ventral pathways connecting temporal, occipital and frontal 
areas as control regions. Our ROI was created by using well-known probabilistic 
atlases of white matter pathways in MNI space16,63. We included any voxel within 
the skeleton that had at least a 50% probability of being part of the long, anterior or 
posterior segments of the arcuate fasciculus, the inferior fronto-occipital fasciculus, 
the inferior longitudinal fasciculus or the uncinate fasciculus. Significant results 
are reported at FWE-corrected P < 0.05 using threshold-free cluster enhancement64 
and a nonparametric permutation test with 5,000 permutations65. Significant voxels 
within the skeleton were filled to make the presentation of results easier to follow. 
Significant clusters (results) were averaged and a mean value per participant, 
reflecting individual microstructural differences, was obtained. These diffusion 
values were then correlated (using Spearman rank correlation) to MEG-derived 
measures of brain synchrony in both frontal and auditory regions (FDR corrected 
for the two correlations computed; see MEG results).

Tractography analyses. Given the TBSS results showing that a cluster consistent 
with the left arcuate fasciculus differentiated high and low synchronizers (Fig. 3), 
confirmatory ad hoc virtual dissections (deterministic tractography) were also 
performed to further locate the white matter pathways underlying the pattern of 
results. Specifically, for each participant, we manually dissected the three segments 
(long, anterior and posterior) of the left arcuate fasciculus24. As a control, the 
left inferior fronto-occipital fasciculus (IFOF) and the left inferior longitudinal 
fasciculus (ILF) were also dissected. The IFOF and ILF were selected on the basis 

of (i) the fact that their anatomy could partially overlap with the TBSS cluster and 
(ii) research suggesting that these pathways are part of the ventral pathway for 
language processing14,29,66.

By using the previously processed diffusion data, whole-brain tractography 
was performed with Diffusion Toolkit 0.6.2.259 and the interpolated streamlines 
algorithm. Tractography was started only in voxels with an FA value greater  
than 0.2 and was stopped when the angle between two consecutive steps was  
larger than 35°. Manual dissection of the tracks was performed with Trackvis59. 
ROIs were defined by using the T1 high-resolution image and the FA and FA 
color-coded maps as a reference for individual anatomical landmarks. The three 
segments of the left arcuate were dissected by using established guidelines with  
a two-sphere approach. For the two control ventral tracts, three spherical ROIs  
at the level of the anterior temporal lobe (temporal ROI), the posterior region 
located between the occipital and temporal lobes (occipital ROI) and the anterior 
floor of the external/extreme capsule (frontal ROI) were created. To define each of 
the ventral tracts of interest, we applied a two-ROI approach: the ILF was obtained 
by connecting the temporal and occipital ROIs, while the streamlines passing 
through the occipital lobe and frontal ROIs were considered as part of the IFOF.  
All these ROIs were applied according to a well-defined anatomical atlas16. 
Exclusion of single-fiber structures that did not represent part of the dissected  
tract was achieved by using subject-specific no-ROIs. After dissection was 
completed, the volume and mean FA and RD values for each tract were extracted 
for further analysis. To take into account individual differences in head volume, 
volumes from all tracts were corrected by dividing the original value by the total 
intracranial volume (TIV) for each subject. TIV was calculated by submitting  
each participant’s T1 high-resolution image to the standard Freesurfer pipeline 
(http://surfer.nmr.mgh.harvard.edu/). By using the extracted values (FA, RD 
and volume), we computed between-group comparisons for the arcuate as a 
whole (sum of the anterior, long and posterior segments), its three segments 
separately, and the IFOF and ILF as control tracts. Thus, we computed a total of 
18 comparisons. We used an FDR-corrected significance threshold of P < 0.05 to 
correct for these multiple calculations.

Phonological word-form-learning task. The task consisted of a volume 
adjustment step as above and two runs each with the following experimental steps:

 1. Exposure phase: participants were exposed to a 2-min-long speech stream 
of words corresponding to one of the created languages (L1 to L4; Supple-
mentary Table 1) and were asked to remain silent (no whispering) during the 
auditory presentation;

 2. Test phase: each word stream was immediately followed by a test phase. Test 
trials consisted of a two-alternative forced choice between a word and a part-
word, both randomly selected from the pool corresponding to a particular 
language. Each word and part-word appeared only twice, each time paired 
with a different item. The total number of test trials was thus eight. Test items 
were presented in both their auditory and written forms and were assigned 
a number (1 or 2) according to their auditory presentation and left–right 
presentation on the screen. Participants were asked to make their choice by 
pressing the corresponding number.

The language presentation order was counterbalanced across participants. 
All participants thus completed two runs, each testing a different language. The 
proportion of correct responses in the two runs was averaged before proceeding 
with group analyses.

The group of participants (N = 100) who completed the online and accelerated 
versions of the SSS test also completed an online version of this word-form-
learning task with the above specifications. The online word-learning task was also 
created using oTree.

To assess learning differences between the groups (high and low 
synchronizers), a nonparametric independent-samples Mann–Whitney–Wilcoxon 
test was calculated for the averaged proportion of correct responses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

code availability
All computer code used for this study is available upon request.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper 
and/or the Supplementary Information. Additional data related to this paper may 
be requested from the authors.
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(Yokogawa Electric Corp., Eagle Technology Corp., Kanazawa Institute of Technology) and Syngo Software 11C (Siemens Prisma 3T MRI 
scanner). Amazon Mechanical Turk Platform and Otree was used to collect online behavioral data. The computer code used for the data 
collection is available upon request

Data analysis Matlab_R2015a, FieldTrip toolbox, FMRIB Software Library 5.0.1, Diffusion Toolkit 0.6.2.2, FreeSurfer 6.0, TrackVis 0.6.1, JASP 0.9.0.1, 
Auditory Model Matlab toolbox, 3D digitizer software Source Signal Imaging, SPM8,  diptest package under R software, Robust 
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Life sciences study design
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Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications

Data exclusions Exclusion criteria was pre-established and the following data points were excluded for the detailed reasons. 3 participants were excluded due 
to artifactual MEG noise and 1 extra participant due to excessive movement during the DW-MRI. 56 subject 
were removed form the stable rate SSS-test Mechanical Turk protocol for non-optimal conditions in their recording. 40 subject were removed 
form the accelerated rate SSS-test Mechanical Turk protocol for non-optimal conditions in their recording. 7 participants were excluded from 
the accelerated version of the SSStest because they spoke instead of whispering and/or stopped whispering for more than 4 seconds

Replication The outcome from our behavioral test was replicated on four different cohort of participants. The learning differences between groups was 
replicated in an online version of the same task.

Randomization Stimulus presentation order was randomized for all experiments with more than one stimulus. When comparing between groups we 
controlled for age, language background, gender and years of musical training.  

Blinding Data collection and analysis were performed blind to the conditions of the experiments for the behavioral tests but not for the MEG and 
structural analyses, as subjects had already been divided into high and low synchronizers. 
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Methods
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ChIP-seq
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MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics 84 participants completed the first behavioral test (SSStest, 32 males; mean age, 28; age range, 19 to 55). From this, a subgroup 
of 37 subjects (right handed; 18 males; mean age, 30; age range, 21 to 55) also underwent MEG and DW-MRI protocols. A 
second cohort of 44 individuals (11 males; mean age, 21; age range, 19 to 31) completed a replication of the behavioral test and 
a word learning task. 55 participants completed a control behavioral test (19 males; mean age, 23; age range, 18 to 36). All 
participants the previously mentioned cohorts were native English speakers and self-reported normal hearing and no 
neurological deficits. 144 native english speakers completed a first Amazon Mechanical Turk experiment (80 males; mean 
age,34; age range, 19 to 5) and 60 native english speakers completed a second Amazon Mechanical Turk experiment ( 37 males; 
mean age, 35; age range, 19 to 51)

Recruitment Participants were recruited from the grater New York University community and from the Amazon Mechanical Turk pool of 
participants. Participants recruitment was performed blind to their demographics. 

Ethics oversight Institutional Review Board (New York University’s Committee on Activities Involving Human Subjects)

Note that full information on the approval of the study protocol must also be provided in the manuscript.



3

nature research  |  reporting sum
m

ary
O

ctober 2018

Magnetic resonance imaging
Experimental design

Design type N/A (diffusion weighted MRI)

Design specifications N/A (diffusion weighted MRI)

Behavioral performance measures N/A (diffusion weighted MRI)

Acquisition

Imaging type(s) diffusion 

Field strength 3 tesla

Sequence & imaging parameters EPI sequence (81 axial slices, TR: 4150 ms, TE: 85.2 ms, flip angle: 90o, slice thickness: 1.5 mm, acquisition matrix: 150 × 
152, voxel size: 1.5 × 1.5 × 1.5 mm3). T1 MPRAGE image (TR = 2400 ms, TE = 2.24 ms, flip angle = 8o, voxel size = 0.80 × 
0.80 × 0.80 mm3, 256 sagittal slices, acquisition matrix = 320 × 300).

Area of acquisition whole brain

Diffusion MRI Used Not used

Parameters 128 directions, single shell, no cardiac gating, b=1500

Preprocessing

Preprocessing software FMRIB Software Library 5.0.1, Diffusion Toolkit 0.6.2.2, FreeSurfer 6.0, TrackVis 0.6.1

Normalization FNIRT (non-linear registration) for DW-MRI

Normalization template FMRIB58_FA template (MNI152 space and 1×1×1 mm3)

Noise and artifact removal N/A

Volume censoring N/A

Statistical modeling & inference

Model type and settings Univariate independent samples

Effect(s) tested Rank Biserial Correlation

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Long, anterior, and posterior segments of the arcuate fasciculus, the inferior-fronto occipital fasciculus, 
the inferior longitudinal fasciculus and the uncinate fasciculus.

Statistic type for inference
(See Eklund et al. 2016)

Threshold-free cluster enhancement

Correction FWE-corrected p < 0.05 value using a nonparametric permutation test with 5000 permutations; FDR

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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