Rethinking attention in time: Expectancy violations reconcile contradictory developmental evidence

Anna Martinez-Alvarez a,⁎, Monica Sanz-Torrent a, Ferran Pons a,b, Ruth de Diego-Balaguera a,b,c,d

a Department of Cognition, Development and Educational Psychology, University of Barcelona, 08035 Barcelona, Spain
b Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
c Cognition and Brain Plasticity Unit, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
d Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain

Abstract
Temporal expectations critically influence perception and action. Previous research reports contradictory results in children's ability to endogenously orient attention in time as well as the developmental course. To reconcile this seemingly conflicting evidence, we put forward the hypothesis that expectancy violations—through the use of invalid trials—are the source of the mixed evidence reported in the literature. With the aim of offering new results that could reconcile previous findings, we tested a group of young children (4- to 7-year-olds), an older group (8- to 12-year-olds), and a group of adults. Temporal cues provided expectations about target onset time, and invalid trials were used such that the target appeared at the unexpected time in 25% of the trials. In both experiments, the younger children responded faster in valid trials than in invalid trials, showing that they benefited from the temporal cue. These results show that young children rely on temporal expectations to orient attention in time endogenously. Importantly, younger children exhibited greater validity effects than older children and adults, and these effects correlated positively with participants' performance in the invalid (unexpected) trials. We interpret the reduction of validity effects with age as an index of better adaptation to the invalid (unexpected) condition.

⁎ Corresponding author at: Department of Developmental Psychology and Socialization, University of Padova, 35131 Padova, Italy.
E-mail address: anna.martinez.alv@gmail.com (A. Martinez-Alvarez).
By using invalid trials and testing three age groups, we demonstrate that previous findings are not inconsistent. Rather, evidence converges when considering the presence of expectancy violations that require executive control mechanisms, which develop progressively during childhood. We propose a distinction between rigid and flexible mechanisms of temporal orienting to accommodate all findings.

© 2020 Elsevier Inc. All rights reserved.

Introduction

In our daily lives, we face multiple situations in which the properties of a given stimulus capture our attention automatically, irrespective of our internal goals. For instance, while walking on the street, the sound of an ambulance may drive our attention to its location in an automatic manner. We can also orient our attention voluntarily according to our current goals such as when looking toward the left side of the street when expecting our late-coming bus to arrive from that location. These two different forms of attention are **exogenous** and **endogenous**, respectively. This distinction is well established in cognitive neuroscience literature both in visuospatial attention—that is, the allocation of attention to a specific location (Corbetta, Patel, & Shulman, 2008; Corbetta & Shulman, 2002)—and in the temporal attention field—that is, the allocation of attention to a particular point in time (Coull & Nobre, 1998; Coull, Vidal, Nazarian, & Macar, 2004).

Orienting mechanisms of attention

Previous research showed that attention is not a unified entity but rather is composed of three different attentional systems: alerting, orienting, and executive (Petersen & Posner, 2012; Posner & Petersen, 1990). Among these, the orienting system refers to the ability to prioritize sensory input by selecting a modality or location. In a typical endogenous spatial orienting task, attention is voluntarily directed to one location in response to predictive cues (e.g., arrows) that provide information about where an upcoming target is likely to appear (Posner, 1980). When participants make use of this endogenous cue, they are faster in detecting targets appearing in validly cued positions compared with invalidly cued locations (Petersen & Posner, 2012; Posner & Petersen, 1990). For many decades, most of the research on attention was focused on the visuospatial domain. During the past three decades, a wealth of work has also focused on the temporal domain, and yet temporal orienting of attention is far from being well understood.

Temporal orienting of attention

Temporal orienting of attention belongs to the research field of timing, which investigates the cognitive mechanisms of temporal expectations. Temporal expectation is a wide-ranging concept that consists of many forms of attentional preparation in time involving a prediction about when a forthcoming event will occur (Coull, Frith, Büchel, & Nobre, 2000; see Correa, 2010 for a review). Temporal expectations benefit perception, action, and learning (Correa, Lupiánuez, Madrid, & Tudela, 2006; Lange, Krämer, & Roeder, 2006; Martens & Johnson, 2005; Milliken, Lupianez, Roberts, & Stevanovski, 2003; Naccache, Blandin, & Dehaene, 2002; Rohenkohl, Gould, Pessoa, & Nobre, 2014), thereby having a critical role in cognition.

Temporal expectations rely on different sources to provide the relevant temporal information. Four of these sources have been well identified in the literature: probabilistic information associated with the passage of time, repetition of the same type of durations, rhythmicity, and temporal information set by explicit predictive cues (see Correa, 2010, for a review). The first three types of temporal
expectations are associated with exogenous attention mechanisms and promote foreperiod, sequential, and rhythmic effects, respectively. The fourth type of temporal expectation is associated with endogenous mechanisms of attention; that is, the ability to use predictive temporal information to orient attention in a goal-directed manner (Coull, Frith, Büchel, & Nobre, 2000; Coull & Nobre, 1998). This type of endogenous attention mechanism was the focus of the current study.

In a pioneering study on this topic, researchers examined whether knowing when an event will occur allows our attentional resources to be directed toward a point in time to optimize our behavior (Coull & Nobre, 1998). Adults were presented with temporal cues that predicted the temporal interval in which a target was most likely to appear—either an early expectancy cue or a late expectancy cue (i.e., expect the target to appear after a short or long time interval, respectively). After the target onset, reaction times (RTs) to its appearance were measured (Coull & Nobre, 1998). The cue–target stimulus onset asynchrony (SOA) was manipulated such that the target actually appeared at either the validly or invalidly cued time interval. Results revealed faster RTs for targets appearing at expected time intervals compared with unexpected time intervals. These results showed for the first time that adults can use temporal predictions to orient attention in time to benefit behavior (Coull & Nobre, 1998). After this groundbreaking study, three decades of research have provided the field with numerous invaluable pieces of evidence of the benefits in behavior of orienting attention in time in adults (Correa, Cona, Arbula, Vallesi, & Bisiacchi, 2014; Correa, Lupiáñez, Milliken, & Tudela, 2004; Coull, Frith, Büchel, & Nobre, 2000; Davranche, Nazarian, Vidal, & Coull, 2011; Heideman et al., 2018; Sanabria, Capizzi, & Correa, 2011), including the elderly population (Chauvin, Gillebert, Rohenkohl, Humphreys, & Nobre, 2016).

Developmental trajectory of temporal orienting of attention

During recent years, developmental research has sought to determine whether children are able to use temporal expectancies to orient attention endogenously in time (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015; Mento & Tarantino, 2015; Mento & Vallesi, 2016) and when this ability emerges during infancy (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017). Such developmental studies have been essential in starting to uncover how the mechanisms of temporal orienting unfold both in typical development (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015; Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017; Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019; Mento & Tarantino, 2015; Mento & Vallesi, 2016) and in atypical development (Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019). Moreover, these investigations are currently of particular importance because recent proposals postulate that temporal orienting abilities may assist or boost other aspects of cognitive development that involve temporal processing such as language (de Diego-Balaguer, Martinez-Alvarez, & Pons, 2016). Unfortunately, the available evidence on typically developing children provides inconsistent results in at least two respects.

Inconsistencies in the results of previous studies

First, although temporal orienting abilities can be observed at 15 months of age (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017), whether or not these are found in children is still controversial. The first study to investigate endogenous temporal orienting of attention during infancy tested 12- and 15-month-olds using an anticipatory eye movement procedure to measure whether infants are able to anticipate a specific time interval predicted by an endogenous temporal cue (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017). Results indicated that at 15 months of age infants show anticipatory behavior based on the temporal information provided by the cue. This evidence suggests that endogenous mechanisms to orient attention in time emerge by the second year of life. These findings converge with data from 6-year-old children showing that they can orient attention in time endogenously, based on a temporal cue (Mento & Tarantino, 2015), as well as with data from typically developing younger children aged 4–6 years (Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019). However, these results are in sharp contrast to two studies with older children (mean age of 11 years),
where children were unable to orient attention in time endogenously in the absence of exogenous cues (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015).

Taken together, the available developmental evidence seems to suggest that an ability found at the early age of 15 months (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017) and also present at 4–6 years of age is no longer detectable at 11 years of age (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015). Crucially, both the results in infants (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017) and the results in young children (Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019; Mento & Tarantino, 2015) could not be explained by exogenous effects.

The second source of inconsistency in results concerns the stabilization versus progression of temporal orienting abilities throughout development. Mento & Tarantino (2015) found no differences when comparing the performance of children aged 6 and 7 years, 8 and 9 years, and 10 and 11 years and adults. That is, all age groups showed abilities comparable to adults, suggesting that at 6 years of age endogenous temporal orienting abilities are fully developed. In contrast, Johnson et al. (2016) found that when temporal abilities could be observed (by adding exogenous cues), temporal orienting abilities significantly differed from those of adults. This result is even more surprising given that the group of children studied was older (mean age of 11 years) compared with the oldest group from the Mento & Tarantino (2015) study. What might explain such inconsistency of results? The main goal of the current study was to offer and test a hypothesis that reconciles this apparently contradictory evidence.

Commonalities and differences in the designs of previous studies

As discussed in both studies above, spatial predictability could be a potential source of conflicting evidence in relation to the presence of endogenous temporal orienting effects in children. Target presentation was central, and therefore always spatially predictive, in Mento & Tarantino (2015) rather than lateralized (either right or left) (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015). In the infant study (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017), target presentation was lateralized but also fully spatially predictive based on the identity of the cue. It is known that the benefit of temporal cues is enhanced when the target location is fixed and spatially predictable (Doherty, Rao, Mesulam, & Nobre, 2005; Rohenkohl, Gould, Pessoa, & Nobre, 2014). Therefore, it is likely that the spatial predictability of the target allowed infants and younger children to benefit from temporal cues.

Another potentially critical source of conflicting evidence is the measurements used to assess children’s temporal orienting abilities. The commonality among all studies is the presence of cues that contain a temporal expectancy (the so-called “valid” or “predictive” condition). Yet they differ in the condition used to compare the temporal expectancy, with either a neutral (nonpredictive) condition or an invalid (unexpected) condition. Consequently, temporal orienting effects were defined either (a) by a decrease in RT as a consequence of a temporal expectation, comparing the temporal predictive condition with a neutral (nonpredictive) condition (Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019; Mento & Tarantino, 2015; Mento & Vallesi, 2016), or (b) as a consequence of a match between temporal expectancy of an event and the actual temporal occurrence of that event (valid condition) compared with a mismatch (invalid condition) (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015).

When children are presented with a neutral condition that does not violate their temporal expectations, significant temporal orienting effects are found, and no differences in performance are observed when comparing children of different ages and adults (Mento & Tarantino, 2015; Mento & Vallesi, 2016). In contrast, when children are presented with an invalid condition that violates their temporal expectations, endogenous temporal orienting effects are harder to observe. In this case, temporal orienting abilities are absent (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2016, Experiment 1) or, if they are present, developmental differences between older children and adults are observed (Johnson et al., 2016, Experiment 2).

As we will argue here, the presence of the unexpected condition could be a potential underlying source of the inconsistent pattern of previous results, especially if one aims at convergence of all
the available developmental evidence, including the presence of endogenous mechanisms of temporal orienting during infancy (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017).

Our hypothesis: The presence of expectancy violations modulates temporal predictions

Here we put forward the hypothesis that the inconsistent results stem from the fact that the temporal expectancies were violated in some of the studies (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015) but not in others (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017; Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019; Mento & Tarantino, 2015). By expectancy violation, we mean the presence of a condition that is in conflict with the temporal expectancy determined by the temporal cue. The concept of expectancy violation is not a new notion but rather has been widely used in other domains (see Summerfield & Egner, 2009, for a review). Although the notion of expectancy violations has already been introduced in the temporal orienting field (Lange, 2013) and in the infants’ learning field (Stahl & Feigenson, 2015), developmental research investigating temporal orienting has overlooked the influence of this factor.

Expectancy violations could have a critical effect in temporal orienting given that they may engage executive mechanisms to a certain extent. Executive attention mechanisms control how our attention is directed according to our goals by detecting and resolving conflict (Petersen & Posner, 2012; Posner & Petersen, 1990), and they show progressive development throughout childhood (Pozuelos, Paz-Alonso, Castillo, Fuentes, & Rueda, 2014; Rueda et al., 2004). Classically, executive attention has been measured with tasks that involve conflict (see Conejero & Rueda, 2017, for a review) such as the Flanker task. Adaptations of the classical Posner paradigm have been developed, including Flankers to differentially measure orienting and executive attention mechanisms in the same task (Rueda et al., 2004). In these versions, the central cue is surrounded by flankers that point in the same or opposite direction of the central cue. Conflict is measured by comparing these two conditions. Although the comparison between valid and invalid trials provides a measure of validity effects considered to reflect only orienting mechanisms of attention, it is critical to consider that an invalid trial also requires dealing with conflict. In invalid trials, individuals need to refrain from giving a predominant—but now inappropriate—response and switch to the nondominant response that is now required. In this sense, it is critical that greater validity effects could be the result from faster RTs in the valid condition or slower RTs in the invalid condition. Because conflict does not affect valid trials, the development of the ability to deal with conflict should mainly affect invalid trials.

When participants have low conflict abilities, the high reliance on the predominant response and the difficulty in switching to the nondominant response should lead to high dispreparation in the invalid (unexpected) condition. In contrast, increased flexibility should allow individuals to be relatively prepared in invalid trials that are less likely—but still possible—to occur, reducing validity effects. Hence, observing whether the differences in validity effects derive specifically from differences in invalid conditions should be informative of how participants deal with conflict.

Here we hypothesized that when measuring children’s temporal orienting effects using invalid conditions that involve expectancy violations, greater validity effects derive from children’s difficulty in flexibly adapting to expectancy violations, leading to slower responses in invalid conditions. As a consequence, greater validity effects may be observed in young children compared with older children and adults because the ability to deal with conflict is not sufficiently mature.

A first support for our hypothesis comes from the differences found between children and adults in Johnson et al. (2016). When age differences are found, children display larger orienting effects than adults (Johnson et al., 2016). That is, the older the participants, the smaller the temporal orienting effect. In this line, Johnson et al. (2016) argued that the age differences could be due to children’s difficulty in responding to the invalid condition. However, their statistical analysis did not allow this conclusion to be drawn from their results.

The goal of this study

The objective of this study was to test a hypothesis that could reconcile the apparently contradictory evidence found in the developmental research of temporal orienting. First, we controlled spatial
predictability, showing cue and target at the central location in our two experiments. By controlling for spatial predictability, we expected to replicate previous studies showing temporal orienting abilities in young children (Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019; Mento & Tarantino, 2015). Second, and most important, we aimed to test whether the presence of expectancy violations might affect the developmental progression of temporal orienting of attention.

If, as we hypothesized, the magnitude of the validity effects through development is associated with adaptation to conflict, we predicted age differences and a direct relation between overall performance and the invalid condition. In this line, Johnson, Bryan, Polonowita, Decroupet, & Coull, (2016), Johnson, Burrowes, & Coull (2015) found such differences when comparing 11-year-old children’s and adults’ performance using invalid trials in the experimental paradigm. The current study goes one step further and compares different age groups that were previously included in separate studies: a younger group of children (4- to 7-year-olds) that overlaps and extends the younger group from Mento, Scerif, Granziol, Franzoi, & Lanfranchi (2019), Mento & Tarantino (2015) and an older group of children (8- to 12-year-olds) that overlaps with and extends the studies of Johnson, Bryan, Polonowita, Decroupet, & Coull (2016). Moreover, developmental differences in the ability to adapt to conflict are found especially from 8 years of age (Pozuelos, Paz-Alonso, Castillo, Fuentes, & Rueda, 2014; Simonds, Kieras, Rueda, & Rothbart, 2007). Thus, the current three-group evaluation (4- to 7-year-olds, 8- to 12-year-olds, and adults) allows us to test and compare with previous studies whether developmental differences in temporal orienting arise between those critical age groups. Finally, we used two experimental designs differing in the weight of exogenous effects: a block design with a high degree of sequential effects (Experiment 1) and a trial-by-trial design with a lower degree of sequential effects due to the constant switch of temporal expectations (Experiment 2).

Experiment 1: Block design

Method

Participants

A total of 117 participants were tested. Of these, 8 participants were excluded due to exceeding 2 standard deviations from the group mean accuracy ($n = 3$) or exceeding 2 standard deviations from the group mean RT ($n = 5$). The final sample of 109 participants was divided into three groups: a group of 50 children younger than 8 years of age (4- to 7-year-olds), a group of 33 children aged 8 years or older (8- to 12-year-olds), and a group of 26 adults. Demographic characteristics of each group are reported in Table 1. A more detailed description of the demographic characteristics within each age group is provided in the Appendix. A power analysis was performed using the GPOWER software (Erdfelder, Faul, & Buchner, 1996) with the effect size from Johnson et al. (2016) (effect size $f = .50$, a large effect under Cohen’s [1988] standards), power set at .80, and alpha = .05. With these parameters, the minimum sample size needed was 12; thus, our final sample size for each age group was largely powered for the main objective of this study. Children were recruited from a primary school in Barcelona, and adults were recruited from the undergraduate psychology population at the University of Barcelona. The latter group took part in the experiment for course credit. All participants were tested by the same experimenter. All participants had normal or corrected-to-normal vision, no auditory problems, and

<table>
<thead>
<tr>
<th>Age</th>
<th>n</th>
<th>Mean (SD)</th>
<th>Range</th>
<th>Gender</th>
<th>Handedness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>Left</td>
</tr>
<tr>
<td>4–7 years</td>
<td>50</td>
<td>6.1 (1.1)</td>
<td>4.0–7.9</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>8–12 years</td>
<td>33</td>
<td>9.1 (1.0)</td>
<td>8.1–12.2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Adults</td>
<td>26</td>
<td>20 (1.3)</td>
<td>18–30</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>

Age in years. Standard Deviation (SD) in parenthesis.
no language development disabilities. Ethical approval of the protocol was obtained from the University of Barcelona in accordance with the 1964 Declaration of Helsinki. Parents provided written informed consent prior to children’s participation in the study.

Stimuli and procedure

Each trial began with a central fixation cross, presented for a jittered duration (750/1000/1250/1500 ms), allowing a variable intertrial interval (ITI), followed by a 400-ms central temporal cue. To engage the children in the task and reduce the working memory load associated with remembering the time associated with the cue, the temporal cues used were semantically transparent. A color picture of a rabbit (expect-early cue) indicated that the target (a red apple) would appear after a short interval (200 ms from cue offset). A color picture of a turtle (expect-late cue) indicated that the target would appear after a long interval (1200 ms from stimulus offset). After the 400-ms temporal cue, a short (200 ms) or long (1200 ms) interval in which the screen remained white was displayed, and then the target appeared for 100 ms. All stimuli were displayed centrally on the screen at a viewing distance of 60 cm. Catch trials were also included to reduce the certainty of target appearance. These trials had the same structure, but the target was not presented. The trial ended when a response was given or after a maximum of 1500 ms. The sequence of events in each trial type is illustrated in Fig. 1. The presentation of stimuli and data collection were controlled using Presentation software (Neurobehavioral Systems, Albany, NY, USA). The experiment was run on a PC connected to a 17-inch monitor at a resolution of 1280 × 1024 pixels.

![Fig. 1. Sequence of events in each trial type (expect-early, expect-late, and catch). The visual cue provided temporal information concerning the cue-to-target interval, which could be short (expect-early trial) or long (expect-late trial) with 75% validity. The target was not presented in catch trials. SOA, stimulus onset asynchrony; ITI, intertrial interval; resp., response.](image-url)
The task consisted of speedy target detection. Participants were instructed to press the space bar with the index finger of their dominant hand (assessed with the Edinburgh Handedness Inventory questionnaire; Oldfield, 1971) as quickly as possible at the target occurrence. They were also instructed not to press the button when the target was not present (i.e., catch trials). To encourage children to be engaged, we presented the experiment as a computer game in which they could feed two animals (the rabbit and the turtle) with an apple (“target”) by pressing the space bar as soon as the apple appeared. Participants were explicitly informed about the temporal meaning of each cue (rabbit/“early cue” and turtle/“late cue”). The experiment included an expect-early block and an expect-late block. In the expect-early block, the temporal cue (i.e., the rabbit) provided either valid temporal information (valid trials – short SOA) or invalid temporal information (invalid trials – long SOA). Because the block also contained catch trials (i.e., trials with no target), participants could not predict whether the target would eventually appear or not. Block order presentation was counterbalanced across participants.

There was a total of 64 trials per block: 56 trials with a target and 8 catch trials (12.5% of the block). The 56 target trials consisted of 42 validly cued trials and 14 invalidly cued trials, producing a validity percentage of 75%. Trials were pseudorandomly presented such that (a) each block started with 7 valid trials and (b) a catch trial or an invalid trial was always followed by a valid trial. This criterion was applied in order to preserve children’s reliability on the temporal cue.

Before starting the experimental session, children underwent two training blocks (expect-early cue and expect-late cue) to ensure that they understood task instructions. Only valid and catch trials were included during training. Participants received audiovisual feedback played automatically during the training session. The training session lasted until participants reached three consecutive correct responses, one of which was always a catch trial. All children successfully completed the training phase. The experiment lasted approximately 20 min, and participants were allowed to take a break between the blocks. Child participants performed the experimental task individually in a quiet room at their school. Adult participants completed the task individually in a sound-attenuated booth at the university.

Results

Mean RTs for each condition and participant were obtained. Omissions, anticipated responses (within the interval between the cue and 100 ms after target onset), and delayed responses (1500 ms after target onset) were considered errors and were excluded from analysis (Mento & Tarantino, 2015). Trials with RTs exceeding 2 standard deviations from the individual average were excluded. The remaining responses were considered correct (Mento & Tarantino, 2015).

Age effects in temporal orienting

To analyze the age effects on temporal orienting at the short interval, a mixed analysis of variance (ANOVA) was used with Validity (valid or invalid) as a within-participants factor and Age (4- to 7-year-olds, 8- to 12-year-olds, or adults) and Order (block with expect-early cue first or block with expect-late cue first) as between-participants factors. Results yielded significant main effects of Age, F(2, 103) = 49.74, p < .001, ηp² = .49, and Validity, F(1, 103) = 363.00, p < .001, ηp² = .78, and a Validity by Age interaction, F(2, 103) = 14.85, p < .001, ηp² = .22. This interaction was broken down by Age. In all three age groups, there was a significant difference between valid and invalid conditions: 4- to 7-year-olds, t(49) = 14.90, p < .001, d = 2.11, 8- to 12-year-olds, t(32) = 11.00, p < .001, d = 1.90, and adults, t(25) = 9.52, p < .001, d = 1.87. All three groups of participants responded to valid trials significantly faster than to Invalid trials. Therefore, the Age by Validity interaction was explained by the decrease in the magnitude of the effects as a function of age (see Fig. 2A). That is, younger children revealed greater effects (M = 112, SD = 53) compared with older children (M = 76, SD = 39), t(81) = 3.41, p = .001, d = 0.76, and compared with adults (M = 58, SD = 31), t(74) = 4.77, p < .001, d = 1.31.

Moreover, a significant main effect of Order, F(1, 103) = 7.97, p = .006, ηp² = .07, and a Validity by Order interaction, F(1, 103) = 8.893, p = .004, ηp² = .08, were observed. In both order types, there was a significant difference between the valid and invalid conditions: early-expectancy first, t(55) = 15.25, p < .001, d = 2.00, and early-expectancy last, t(52) = 11.63, p < .001, d = 1.60. The Validity
by Order interaction was due to a greater magnitude of the effects in those participants starting with the expect-early block ($M = 102, SD = 50$) compared with participants starting with the expect-late block ($M = 74, SD = 46$), $t(107) = 3.04, p = .003, d = 0.60$. The difference in magnitude was due to shorter RTs in the valid trials in the expect-early block group ($M = 333, SD = 68$) compared with the expect-late block group ($M = 375, SD = 74$), $t(107) = 3.11, p = .002, d = 0.60$. Block order did not affect RTs in the invalid trials, $t(107) = 0.78, p = .436$. There was no Age by Order interaction, $F(2, 103) = 0.015, p = .98$, nor was there a Validity by Age by Order interaction, $F(2, 103) = 0.44, p = .65$. Therefore, the order effects were comparable in all the age groups, affecting only performance in the valid condition.

Developmental trend of temporal orienting effects

For our results to be comparable to previous studies, in the above-presented ANOVA we first analyzed Age as a categorical variable (with participants being divided into three age groups). Nevertheless, given the nature and age distribution of the collected sample, we were able to analyze age (in months) as a continuous variable as well. Pearson’s correlation revealed a statistically significant negative correlation between the Validity effects and Age; the older the children, the smaller the effects, $r (83) = −.319, p = .003$ (*Fig. 3A*).
To analyze the source of the variability in the magnitude of the temporal orienting effects, we first standardized the data per age group to avoid the potential confound of age. Using Bonferroni correction, a significant positive correlation between the magnitude of the effects and the invalid condition was observed, \(r(109) = 0.441, p < .001 \) (Fig. 4A), and a significant negative correlation between the magnitude of the effects and RTs in the valid condition was observed, \(r(109) = -0.237, p = .013 \) (Fig. 4B). This indicated that greater validity effects were associated with slower responses in invalid (unexpected) trials and with faster responses in valid trials.

Sequential effects

To test the potential exogenous effects in temporal orienting due to the high number of same-trial repetitions in a block design, we analyzed the presence of sequential effects (i.e., the repetition of a previous-short SOA compared with a previous-long SOA). There was a main effect of previous SOA, \(F(1, 103) = 23.20, p < .001 \), \(\eta^2_p = .18 \), due to participants’ shorter RTs in previous-short trials \((M = 326, SD = 66) \) compared with previous-long trials \((M = 355, SD = 92) \). Critically, no significant Previous SOA by Age interaction, \(F(2, 103) = 2.32, p = .10 \), was found. This indicates that all groups were equally affected by sequential effects. An additional analysis was carried out to further investigate the age distribution of the sequential effects in children. Pearson’s correlation revealed a statistically non-

![Fig. 4.](image-url)

Source of the temporal orienting effects

To analyze the source of the variability in the magnitude of the temporal orienting effects, we first standardized the data per age group to avoid the potential confound of age. Using Bonferroni correction, a significant positive correlation between the magnitude of the effects and the invalid condition was observed, \(r(109) = 0.441, p < .001 \) (Fig. 4A), and a significant negative correlation between the magnitude of the effects and RTs in the valid condition was observed, \(r(109) = -0.237, p = .013 \) (Fig. 4B). This indicated that greater validity effects were associated with slower responses in invalid (unexpected) trials and with faster responses in valid trials.

Sequential effects

To test the potential exogenous effects in temporal orienting due to the high number of same-trial repetitions in a block design, we analyzed the presence of sequential effects (i.e., the repetition of a previous-short SOA compared with a previous-long SOA). There was a main effect of previous SOA, \(F(1, 103) = 23.20, p < .001 \), \(\eta^2_p = .18 \), due to participants’ shorter RTs in previous-short trials \((M = 326, SD = 66) \) compared with previous-long trials \((M = 355, SD = 92) \). Critically, no significant Previous SOA by Age interaction, \(F(2, 103) = 2.32, p = .10 \), was found. This indicates that all groups were equally affected by sequential effects. An additional analysis was carried out to further investigate the age distribution of the sequential effects in children. Pearson’s correlation revealed a statistically non-

![Fig. 4.](image-url)
significant correlation between the age (calculated in months) and the sequential effects, \(r(83) = .105, p = .345 \), further suggesting that children’s age did not modulate automatic sequential effects.

Taken together, these results reveal that in an experimental design with invalid trials, controlling for spatial predictability, younger children (4- to 7-year-olds) were able to use temporal cues to orient attention in time endogenously. Moreover, a developmental progression was observed with greater validity effects in the younger group compared with the older group of children (8- to 12-year-olds) and in the older group compared with the adult group. Although automatic sequential effects were observed, they affected all age groups equally. The results also show that the magnitude of the temporal orienting effects is positively correlated with performance in the invalid (unexpected) conditions, with those participants showing greater effects responding slower in the unexpected temporal condition.

In Experiment 1, we used a block design, which intrinsically contains a high number of same-trial presentations. Experiment 2 aimed to replicate and extend the results of the first experiment by manipulating the temporal expectations on a trial-by-trial basis to minimize automatic sequential effects on temporal orienting abilities.

Experiment 2: Trial-by-trial design

Method

Participants

A total of 92 participants were tested. None of the participants in Experiment 1 was enrolled in Experiment 2. Of the 92 participants, 12 were excluded for exceeding 2 standard deviations from the group mean accuracy \((n = 4) \), exceeding 2 standard deviations from the group mean RT \((n = 5) \), not finishing the experiment \((n = 1) \), not following task instructions by pressing constantly throughout the trial \((n = 1) \), or technical error \((n = 1) \). The final sample of 80 participants was divided into a group of 33 children younger than 8 years of age (4- to 7-year-olds), a group of 18 children aged 8 years or older (8- to 12-year-olds), and a group of 29 adults. Demographic characteristics of each group are reported in Table 2. A more detailed description of the demographic characteristics within each age group is provided in the Appendix. All participants were tested by the same experimenter. All participants had normal or corrected-to-normal vision, no auditory problems, and no language development disabilities. Ethical approval of the protocol was obtained from the University of Barcelona in accordance with the 1964 Declaration of Helsinki. Parents provided written informed consent prior to children’s participation in the study.

Stimuli and procedure

The same procedure was used as in Experiment 1, with two differences. First, instead of a block design, a trial-by-trial design was used. Second, the order constraints were removed; trials were presented in random order instead of pseudorandomly. The experiment was also divided into two identical blocks with a short break of approximately 2 min between them. The same number of stimuli from each condition was included in each block.

Table 2

Main demographic characteristics of participants in Experiment 2 (trial-by-trial design).

<table>
<thead>
<tr>
<th></th>
<th>Gender</th>
<th>Handedness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>4–7 years</td>
<td>33</td>
<td>6.2 (1.3)</td>
</tr>
<tr>
<td>8–12 years</td>
<td>18</td>
<td>9.3 (0.6)</td>
</tr>
<tr>
<td>Adults</td>
<td>29</td>
<td>21 (1.2)</td>
</tr>
</tbody>
</table>

Age in years. Standard Deviation (SD) in parenthesis.
Results

Mean RTs for each condition and participant were obtained. Omissions, anticipated responses (within the interval between the cue and 100 ms after target onset), and delayed responses (1500 ms after target onset) were considered errors and were excluded from analysis (Mento & Tarantino, 2015). Trials with RTs exceeding 2 standard deviations from the individual average were excluded. The remaining responses were considered correct (Mento & Tarantino, 2015).

Age effects in temporal orienting

To determine the validity effect at the short interval, an ANOVA involving Validity (valid or invalid) and Age (4- to 7-year-olds, 8- to 12-year-olds, or adults) was performed. As in Experiment 1, a significant Validity effect, $F(1, 77) = 13.80, p < .001, \eta^2_p = .15$, and a Validity by Age interaction, $F(1, 77) = 4.96, p = .009, \eta^2_p = .11$, were found (see Fig. 3B). This interaction was broken down by Age. A significant difference between valid and invalid conditions was found in the younger group (4- to 7-year-olds) due to children’s faster RTs to valid trials ($M = 429, SD = 90$) than to invalid trials ($M = 453, SD = 92$), $t(32) = 3.682, p = .001, d = 0.64$. Adults also responded faster to valid trials ($M = 282, SD = 37$) than to invalid trials ($M = 289, SD = 40$), $t(28) = 2.84, p = .008, d = 0.53$. As in Experiment 1, the young group of children showed a greater magnitude of effects ($M = 24, SD = 37$) compared with adults ($M = 6, SD = 12$), $t(60) = 2.43, p = .014, d = 0.63$. Thus, the results concerning these two groups replicated the results of Experiment 1. The use of a trial-by-trial design in Experiment 2 revealed no significant effects in the older group of children (8- to 12-year-olds) given the similar responses to valid trials ($M = 323, SD = 45$) and invalid trials ($M = 327, SD = 44$), $t(17) = 0.95, p = .36$. Although these results do not replicate those found in Experiment 1, which used a block design, they do replicate previous null findings in the group of children aged 11 years using the same trial-by-trial design (Johnson, Bryan, Polonowita, Decropuet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015, Experiment 1).

Developmental trend of temporal orienting effects

As in Experiment 1, Pearson’s correlation again revealed a statistically significant negative correlation between the Validity effects and Age (in months) in the second experiment; the older the children, the smaller the effects, $r(51) = -0.409, p = .003$. Overall, the results reiterate the previous findings obtained in the ANOVA, revealing that the magnitude of the validity effects varies with age such that children show the greatest amount of effects early in childhood.

Source of the temporal orienting effects

As in Experiment 1, to analyze the source of the variability in the magnitude of the temporal orienting effects, we first standardized the data per age group to avoid the potential confound of age. Using Bonferroni correction, a significant positive correlation between the magnitude of the effects and RTs in the invalid condition, $r(80) = .287, p = .010$, was found (Fig. 4C), but no statistically significant correlation between the magnitude of the validity effects and the valid condition emerged, $r(80) = -.062, p = .584$ (Fig. 4D). This result indicates that greater temporal orienting effects were associated with slower RTs in the invalid (unexpected) condition.

Sequential effects

Post hoc analyses were carried out to determine the sequential effects (i.e., the repetition of a previous short SOA vs. a previous long SOA). As in Experiment 1, there was a main effect of previous SOA, $F(1, 77) = 5.39, p = .02, \eta^2_p = .065$, but no Previous SOA by Age interaction was observed, $F(2, 77) = 0.27, p = .77$. Again, the results indicate that all groups were equally affected by automatic sequential effects. An additional analysis was carried out to further investigate the age distribution of the sequential effects in children. Pearson’s correlation revealed a statistically non-significant correlation between age (calculated in months) and the sequential effects, $r(83) = -.120, p = .401$, further suggesting that children’s age did not modulate automatic sequential effects.

Taken together, the results from Experiment 2 confirmed that in an experimental design with invalid trials, and controlling for spatial predictability, young children (4- to 7-year-olds) were able to use temporal cues to orient attention in time endogenously. Moreover, a developmental progression was
observed with greater validity effects in the younger group compared with adults. No significant effects were observed in the older group of children (8- to 12-year-olds), replicating previous studies using a validity design (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015, Experiment 1). Although automatic sequential effects were observed, they affected all age groups equally. The results also show that the magnitude of the temporal orienting effects positively correlated with the performance in the invalid (unexpected) conditions, with those participants showing greater effects responding slower in the unexpected temporal condition.

Comparison between experiments (block vs. trial-by-trial design)

To directly compare maximizing (Experiment 1) and minimizing (Experiment 2) automatic sequential effects on temporal orienting abilities, we compared the validity effects in the two experiments. A mixed ANOVA with Experiment (1 or 2) and Age (4- to 7-year-olds, 8- to 12-year-olds, or adults) as between-participant factors and Validity (valid or invalid) as a within-participants factor revealed a significant main effect of Experiment, \(F(1, 183) = 11.26, p = .001, \eta^2_p = .058\). Quite unexpectedly, participants responded faster in Experiment 2 than in Experiment 1. No Age by Experiment interaction was observed, \(F(1, 183) = 1.69, p = .19\). There was also a main effect of Validity, \(F(1, 183) = 258, p < .001, \eta^2_p = .59\), and a Validity by Age interaction, \(F(2, 183) = 16.60, p < .001, \eta^2_p = .15\). Interestingly, a statistically significant Validity by Experiment interaction, \(F(1, 183) = 150, p < .001, \eta^2_p = .45\), was found due to smaller effects in Experiment 2 (\(M = 12, SD = 27\)) compared with Experiment 1 (\(M = 88, SD = 50\)). A significant Validity by Experiment by Age interaction, \(F(2, 183) = 3.78, p = .025, \eta^2_p = .040\), was also found. This interaction was then broken down by Age.

In the younger group (4- to 7-year-olds), we observed a significant Validity by Experiment interaction, \(F(1, 81) = 69.75, p < .001, \eta^2_p = .463\). A significant difference in invalid trials between experiments was found, \(t(81) = 2.906, p = .005, d = 0.64\), due to participants’ faster RTs in Experiment 2 (\(M = 453, SD = 92\)) compared with Experiment 1 (\(M = 508, SD = 79\)). The opposite pattern of results was observed in the valid condition, in which participants showed faster RTs in Experiment 1 (\(M = 396, SD = 66\)) compared with Experiment 2 (\(M = 430, SD = 90\)), \(t(81) = 1.95, p = .054, d = 0.43\).

In the older group of children (8- to 12-year-olds), we observed a significant Validity by Experiment interaction, \(F(1, 49) = 54.62, p < .001, \eta^2_p = .527\). As found in the young group, a significant difference between experiments arose in the invalid condition, \(t(49) = 5.650, p < .001, d = 1.60\), with participants being faster in Experiment 2 (\(M = 327, SD = 44\)) compared with Experiment 1 (\(M = 415, SD = 57\)). However, no significant difference in valid trials was observed, \(t(49) = 1.04, p = .30\).

The same results were found in adults. That is, there was a significant Validity by Experiment interaction, \(F(1, 53) = 69.84, p < .001, \eta^2_p = .569\), due to a difference between experiments in invalid trials, \(t(53) = 4.808, p < .001, d = 1.32\), driven by participants’ faster RTs in Experiment 2 (\(M = 289, SD = 40\)) compared with Experiment 1 (\(M = 347, SD = 49\)), but there were no significant differences in valid trials, \(t(53) = 0.51, p = .61\).

Overall, all three groups of participants responded faster in Experiment 2 compared with Experiment 1 in the invalid (unexpected) condition, but no significant differences were observed in the valid condition. This suggests that the trial-by-trial design promoted faster RTs in the invalid (unexpected) trials.

The analysis of the sequential effects comparing the two experiments in an ANOVA showed that the main effect of Previous SOA was significant, \(F(1, 183) = 23.98, p < .001, \eta^2_p = .12\). In addition, a marginal Experiment by Previous SOA interaction was observed, \(F(1, 183) = 3.36, p = .068\), due to greater effects of previous SOA in Experiment 1 than in Experiment 2. Finally, the Age by Previous SOA interaction, \(F(2, 183) = 2.04, p = .13\), and the Age by Experiment by Previous SOA interaction were statistically non-significant, \(F(2, 183) = 0.697, p = .50\), suggesting that the sequential effects were comparable across ages.

General discussion

In the current research we investigated whether the presence of expectancy violations in a temporal orienting design could reconcile the existing contradictory evidence on the developmental
trajectory of endogenous temporal orienting of attention. To do so, we tested three age groups in a temporal orienting task that included invalid (unexpected) trials, and we controlled for spatial predictability presenting cues and target in the central location. We sought to establish whether developmental differences would arise in the context of expectancy violations and whether the source of the temporal orienting differences derived from the condition that violated the temporal expectancy given by the cue (i.e., invalid condition). To this end, the group of young children was selected to be comparable to the group of young children tested in the Mento, Scerif, Granziol, Franzoi, & Lanfranchi (2019), Mento & Tarantino (2015) studies, and an older group was selected to be comparable to the children tested in the studies by Johnson, Bryan, Polonowita, Decroupet, & Coull (2016) Johnson, Burrowes, & Coull (2015). In Experiment 1 and Experiment 2, we used a blocked design and a trial-by-trial design, respectively, to vary the weight of exogenous sequential effects. The results indicate that in both experiments younger children (4- to 7-year-olds) show greater temporal orienting effects compared with older children (8- to 12-year-olds) and adults, highlighting a developmental trajectory. We observed that with increased age, children and adults are better prepared (i.e., display faster RTs) in the invalid condition, leading to a reduction in validity effects. Indeed, our results revealed that temporal orienting effects positively correlated with performance in the invalid (unexpected) condition in both experiments. Moreover, when a block design was used, temporal orienting effects were negatively correlated with performance in the valid (highly predictive) condition. This finding is expected in this type of block design with a higher number of consecutive valid trials. In the group of older children, the improved performance in invalid trials implies an absence of validity effects in Experiment 2 when temporal orienting effects are not boosted by sequential effects as in Experiment 1. The whole pattern of results replicates previous research providing an explanation for the source of the apparently contradictory findings.

Children's ability to orient attention in time endogenously

Taken together, our results reveal that children can orient attention in time endogenously. This conclusion is drawn from the significant difference between valid and invalid trials in the younger group of children that was replicated in both experiments. These findings converge with Mento and colleagues' findings (Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019; Mento & Tarantino, 2015; Mento & Vallesi, 2016), revealing that young children are able to orient attention in time endogenously to benefit behavior even when exogenous effects are kept to a minimum. The results from our groups of young children replicate the finding that this ability is observed in children as young as 4 years (Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2019; Mento & Tarantino, 2015). This is consistent with the infant findings showing that endogenous temporal orienting abilities can already be observed in the second year of life (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017).

Interestingly, the current study also replicated the results from Johnson, Bryan, Polonowita, Decroupet, & Coull (2016), Johnson, Burrowes, & Coull (2015). Temporal orienting effects were observed in the group of older children (8- to 12-year-olds) only in the design where validity effects were boosted by exogenous effects using a blocked design (Experiment 1), but not where these exogenous effects were kept to a minimum. The results from Johnson et al. (2016) study and in our study were different. Whereas we used sequential effects, Johnson et al. (2016) used the repetition of the same temporal interval with repeated cue presentation. However, both exogenous effects were as effective in boosting validity effects. Critically, we observed that those effects affected all age groups equally, ruling out the possibility of those effects being the source of the differences between groups.

Importantly, the fact that no validity effects are observed when using a validity paradigm may be due to (at least) two reasons. First, and most obvious, it could be due to participants being unable to benefit from the temporal (valid) cue. Second, it is possible that participants could be equally well prepared to respond in the invalid (less predictive) condition as in the valid (highly predictive) condition. Although in both scenarios we would not observe a difference in performance between the valid and invalid conditions (i.e., a null effect), the interpretation in terms of temporal orienting abilities in
children (being either present or absent) is fundamentally different. The older group of children (mean age of 11 years) tested in Johnson, Burrowes, & Coull (2015) showed a null effect, which the authors interpreted as an indication of children’s inability to use a temporal cue to endogenously orient attention in time. Using a similar validity paradigm, our older child group (8- to 12-year-olds) in Experiment 2 also shows a null effect. Importantly, our findings indicate that our younger child group (4- to 7-year-olds) is indeed able to use a temporal cue endogenously. Because our younger child group can indeed orient in time, we interpret the null finding of the older group not as an absence of a temporal orienting abilities in children, but rather as a flexible ability to orient in time to less predictable situations as a function of executive control development. In the case of Johnson, Burrowes, & Coull (2015) null effect, both possibilities still remain possible due to (at least) two methodological aspects. First, the experimenters manipulated spatial and temporal orienting in the same task, which could tap into general cognitive load required to successfully perform the task. Second, the stimuli used as temporal cues were not child friendly and not semantically transparent, which could have introduced additional working memory load in order to encode, maintain, and retrieve the information provided by the cue. Therefore, it is possible that potential confounds such as cue transparency, child-friendly task, and overall higher working load could be responsible for children’s inability to use the temporal cue. However, it is still plausible that even in this higher working load paradigm, children were indeed able to use the temporal cue and also able to adapt to the invalid (less predictive) condition. We find this second possibility unlikely, due to the above-mentioned methodological challenges with which children were presented, but still theoretically plausible.

Therefore, regarding the presence (or absence) of endogenous temporal orienting mechanisms in children, the results obtained and replicated in both experiments clearly show that the younger group of children demonstrates temporal orienting abilities. That is, young children can orient attention in time irrespective of the way in which temporal expectancies are presented—either blocked or on a trial-by-trial basis. We argue that the result obtained in older children reflects an age-related shift in the way in which expectancy violations are processed, as is discussed below.

Developmental course of endogenous temporal orienting

In both experiments, results revealed developmental differences between age groups, with younger children differing from older children and adults in their ability to orient attention in time. This conclusion is drawn from the significant difference in validity effects between the younger group of children (4- to 7-year-olds) and the older group (8- to 12-year-olds) as well as between the young children and adults. These results were replicated in both Experiment 1 and Experiment 2. Because previous studies showed inconsistent findings regarding the developmental trajectory of endogenous temporal orienting abilities, our results may help to elucidate a potential source of discrepancy.

While replicating the existence of endogenous temporal orienting effects in children, our results seem to contradict previous studies showing no age differences when comparing temporal orienting abilities in children of varying ages (Mento & Tarantino, 2015). However, we propose that the explanation for these differences derives from the involvement of conflict due to the presence of expectancy violations. Briefly stated, in those temporal orienting studies that use only 100% predictive cues, the temporal expectancies are never violated. Hence, no conflict is introduced in the design and, as a consequence, no age effects are observed (Mento & Tarantino, 2015). In contrast, in the presence of invalid trials, the predictability of the temporal cue with respect to the actual target time is violated. And because the presence of such violations of expectancy taps into executive components of attention (Conejero & Rueda, 2017), which develop progressively over childhood, developmental differences arise.

Our results replicate previous results on age differences (Johnson et al., 2016) not only with respect to developmental changes when comparing children and adults but, more important, also in terms of directionality: the older the participants, the smaller the magnitude of the temporal orienting effects. In both Experiment 1 and Experiment 2, we found that younger children show greater temporal orienting effects compared with older children and adults. We do not interpret this as indicating that children show better orienting abilities compared with adults. Rather, we propose that young children have more difficulties in dealing with conflict due to a more immature executive control system.
Specifically, when temporal orienting mechanisms are assessed using invalid trials, children may need to recruit not only their attentional orienting network but also executive attention because they need to flexibly adapt to this conflict. Because the executive network shows a progressive development course across childhood (Pozuelos, Paz-Alonso, Castillo, Fuentes, & Rueda, 2014; Rueda, Fan, et al., 2004; Rueda, Posner, Rothbart, & Davis-Stober, 2004), developmental differences arise. Thus, the observed age differences might not be an index of temporal orienting abilities per se but rather an indication of a developmental change in the way that children flexibly adapt to expectancy violations and become progressively better prepared in those trials involving conflict (i.e., invalid trials).

This interpretation is sustained by the fact that participants’ performance is associated with the invalid condition exclusively. The reduction in the validity effects with development was specifically related to invalid trials. These results were replicated in both Experiment 1 and Experiment 2. Crucially, the direction of the correlations indicates that smaller validity effects relate to better preparation (faster RTs) for an invalid (unexpected) time. These results suggest that the decrease in validity effects is due to children being progressively faster in invalid (unexpected) trials. In addition, these effects cannot be due to sequential effects given that they did not differ between the age groups. Therefore, we interpret the reduction in validity effects with age as an index of better preparation to the invalid (unexpected) condition. This interpretation is in agreement with the evidence coming from previous developmental studies on attention in the visuospatial domain (Pozuelos, Paz-Alonso, Castillo, Fuentes, & Rueda, 2014; Rueda et al., 2004). In these studies, comparable orienting effects were observed in 6- and 10-year-old children when the design did not involve conflict. However, when conflict was introduced, developmental differences in orienting arose between 6 and 12 years of age (Pozuelos, Paz-Alonso, Castillo, Fuentes, & Rueda, 2014).

In terms of the underlying mechanisms, we suggest that previous studies on temporal orienting may have tapped into different attentional components—either orienting mechanisms alone, in the absence of expectancy violations (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017; Mento, Scerif, Granziol, Franzioli, & Lanfranchi, 2019; Mento & Tarantino, 2015; Mento & Vallesi, 2016), or orienting mechanisms affected by executive control mechanisms when expectancy violations are present (Johnson, Bryan, Polonowita, Decroupet, & Coull, 2016; Johnson, Burrowes, & Coull, 2015).

Based on this, we propose a distinction between rigid and flexible temporal orienting mechanisms. Rigid temporal orienting may be observed when a fixed temporal expectation is built and used. Developmentally, rigid temporal orienting may already be observed at 2 years of age (Martinez-Alvarez, Pons, & de Diego-Balaguer, 2017) and appears to remain stable from 6 years of age to adulthood (Mento & Tarantino, 2015). In contrast, flexible temporal orienting might be observed when temporal expectations are violated and hence executive mechanisms, which develop progressively over childhood, are required.

The current findings open new perspectives on the interaction between the orienting and executive attention networks, suggesting future work investigating the interaction of the three networks in the temporal domain. Along this line, previous studies on visuospatial attention have observed an interaction between the orienting and executive systems during adulthood (Callejas, Lupiáñez, & Tudela, 2004; Fan, McCandliss, Sommer, Raz, & Posner, 2002) and childhood (Johnson, Lewis, & Cornish, 2020; Mezzacappa, 2004; Mullane, Lawrence, Corkum, Klein, & McLaughlin, 2014; Pozuelos, Paz-Alonso, Castillo, Fuentes, & Rueda, 2014). Unfortunately, this interaction has not yet been investigated in the temporal orienting domain. Future research should be undertaken to adapt the Attention Network Test (ANT) to the temporal domain and directly examine the interaction of the orienting and executive networks in the presence of temporal expectancy violations.

Finally, the temporal orienting processes investigated here may have an adaptive value for the developmental trajectory of other cognitive domains with intrinsic temporal characteristics, such as language and music (Astheimer, Janus, Moreno, & Bialystok, 2014; François, Chobert, Besson, & Schön, 2013). Thus, an important domain for further exploration concerns whether the temporal orienting abilities investigated here may be a part of essential aspects of cognitive development that involve temporal processing such as language (de Diego-Balaguer, Martinez-Alvarez, & Pons, 2016; Orpella et al., 2020).
Conclusions

In a study with three age groups (younger children aged 4–7 years, older children aged 8–12 years, and young adults) assessing participants in a block design (Experiment 1) and a trial-by-trial design (Experiment 2), we show that even the youngest children are able to use temporal predictions to orient attention in time endogenously. These results provide evidence that, with progressive development, age differences in endogenous temporal orienting abilities are observed due to improved capacity to deal with conditions that involve violations of expectancy (i.e., invalid trials). When taking this factor into consideration, seemingly contradictory findings appear to converge.

CRediT authorship contribution statement

Anna Martinez-Alvarez: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Visualization, Writing - original draft, Writing - review & editing. Monica Sanz-Torrent: Methodology, Resources, Validation. Ferran Pons: Conceptualization, Methodology, Validation, Writing - review & editing. Ruth de Diego-Balaguer: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Validation, Writing - review & editing.

Acknowledgments

The authors thank all the families who took part in our research. We are thankful to David Cucurell and Joan Birulés for their technical support in data analysis and to Irene de la Cruz-Pavía for her very helpful comments on earlier versions of the manuscript. This study was funded by the European Commission (Grant ERC-StG-313841, TuningLang, to R.D.-B.) and by Ministerio de Ciencia, Innovación y Universidades, which is part of Agencia Estatal de Investigación (AEI), through Project BFU2017-87109-P (co-funded by European Regional Development Fund [ERDF]). We thank IDIBELL and CERCA Programme/Generalitat de Catalunya for institutional support.

Appendix

Detailed demographic characteristics of participants included in Experiment 1 (block design) and Experiment 2 (trial-by-trial design)

<table>
<thead>
<tr>
<th>Exp. 1</th>
<th>Age</th>
<th>Gender</th>
<th>Handedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5 years</td>
<td>22</td>
<td>5.0 (0.5)</td>
<td>4.0 – 5.9</td>
</tr>
<tr>
<td>6-7 years</td>
<td>28</td>
<td>6.9 (0.5)</td>
<td>6.0 – 7.9</td>
</tr>
<tr>
<td>10-12 years</td>
<td>5</td>
<td>11.0 (0.8)</td>
<td>10.0 – 12.2</td>
</tr>
<tr>
<td>Adults</td>
<td>26</td>
<td>20 (1.3)</td>
<td>18 – 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp. 2</th>
<th>Age</th>
<th>Gender</th>
<th>Handedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5 years</td>
<td>14</td>
<td>4.9 (0.6)</td>
<td>4.0 – 5.9</td>
</tr>
<tr>
<td>6-7 years</td>
<td>19</td>
<td>7.3 (0.6)</td>
<td>6.0 – 7.9</td>
</tr>
<tr>
<td>10 years</td>
<td>1</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Adults</td>
<td>29</td>
<td>21 (1.2)</td>
<td>18 – 28</td>
</tr>
</tbody>
</table>

Note. Ages are in years. Standard deviations are in parentheses. Dotted lines separate the three age groups included in the analyses.
References

