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a b s t r a c t 

Understanding how the brain processes reward is an important and complex endeavor, which has involved the use 

of a range of complementary neuroimaging tools, including electroencephalography (EEG). EEG has been praised 

for its high temporal resolution but, because the signal recorded at the scalp is a mixture of brain activities, it 

is often considered to have poor spatial resolution. Besides, EEG data analysis has most often relied on event- 

related potentials (ERPs) which cancel out non-phase locked oscillatory activity, thus limiting the functional 

discriminative power of EEG attainable through spectral analyses. Because these three dimensions -temporal, 

spatial and spectral- have been unequally leveraged in reward studies, we argue that the full potential of EEG 

has not been exploited. To back up our claim, we first performed a systematic survey of EEG studies assessing 

reward processing. Specifically, we report on the nature of the cognitive processes investigated (i.e., reward 

anticipation or reward outcome processing) and the methods used to collect and process the EEG data (i.e., 

event-related potential, time-frequency or source analyses). A total of 359 studies involving healthy subjects and 

the delivery of monetary rewards were surveyed. We show that reward anticipation has been overlooked (88% 

of studies investigated reward outcome processing, while only 24% investigated reward anticipation), and that 

time-frequency and source analyses (respectively reported by 19% and 12% of the studies) have not been widely 

adopted by the field yet, with ERPs still being the dominant methodology (92% of the studies). We argue that 

this focus on feedback-related ERPs provides a biased perspective on reward processing, by ignoring reward 

anticipation processes as well as a large part of the information contained in the EEG signal. Finally, we illustrate 

with selected examples how addressing these issues could benefit the field, relying on approaches combining 

time-frequency analyses, blind source separation and source localization. 
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. Introduction 

Reward processing is at the very heart of goal-directed behavior and

ecision-making. It has been shown to be impaired across a wide range

f psychiatric disorders ( Balodis and Potenza, 2015 ; Ng et al., 2019 ;

usslock and Alloy, 2017 ), making it a potentially valuable transdi-

gnostic marker of mental health ( Hägele et al., 2015 ). Understand-

ng how the brain processes rewards is thus crucial, but remains a

omplex endeavor. First, reward processing comprises both anticipa-

ory and outcome phases, each of them involving several processes

o-occurring at various times scales. While reward anticipation corre-
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ponds to the cognitive operations that precede an incoming reward,

ncluding incentive valuation, probability estimation or motor prepa-

ation, reward outcome corresponds to those operations triggered by

he actual delivery of the reward, including hedonic feelings, reward

alue update and behavioral reinforcement. Broadly speaking, incen-

ive salience (‘wanting’), hedonic impact (‘liking’), and learning can be

een as the three core components of reward ( Berridge et al., 2009 ;

erridge and Robinson, 2003 ). Second, reward processing involves

arge brain networks as well as various neuromodulators ( Haber and

nutson, 2010 ; Kranz et al., 2010 ; Liu et al., 2011 ). This complex-

ty thus requires the use of complementary neuroimaging techniques
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n order to gain a global understanding of reward processing in the

rain. 

Functional MRI and PET have been among the most popular tech-

iques used to investigate reward processing and have helped charac-

erize the underlying brain networks and neurochemistry. On the other

and, electroencephalography (EEG) has been leveraged for its fine tem-

oral resolution, which can reveal the rapid brain dynamics that re-

ain out of reach for fMRI and PET ( Luck, 2014 ). As such, many EEG

tudies have tracked specific timed events associated with reward pro-

essing, most often through event-related potentials (ERPs) (see for re-

iews: Brunia et al., 2011 ; Foti and Weinberg, 2018 ; Glazer et al., 2018 ;

uft, 2014 ; Marco-Pallarés et al., 2015 ; Proudfit, 2015 ; Sambrook and

oslin, 2015 ; San Martín, 2012 ; Walsh and Anderson, 2012 ). However,

 major limitation of EEG in general, and ERPs in particular, is that

he signal recorded at the scalp is a mixture of a number of different

rain activities arising from a number of different brain regions. The

esulting mixing of brain activities is exacerbated by volume conduc-

ion, which causes activity from a single region to spread across a large

art of the scalp (see Jackson and Bolger, 2014 for a comprehensive re-

iew on EEG signal generation). But confounds do not only arise from

he limited spatial resolution inherent to the method. Simply consid-

ring event-related voltage deflections recorded between two sensors

lso neglects the fact that electrophysiological brain activity can occur

hrough different frequency bands. Disentangling the temporal, spatial

nd functional overlaps of electrophysiological activities is thus a cen-

ral issue to consider in order to optimally benefit from EEG . More

r less advanced signal processing methods can enhance the discrimi-

ative power of EEG, by (1) considering the frequency content of the

ignal that provides functional signatures of neurocognitive processes,

2) using mathematical solutions to separate the functional sources of

ctivity mixed in the overall electroencephalogram, and (3) estimating

he anatomical origin of an electrophysiological marker. 

Indeed, because brain activity recorded with EEG is composed of os-

illations that occur in different frequency bands, their separation via

ime-frequency analyses (which assess the spectral characteristics of the

ignal as a function of time) constitutes a first way to isolate activi-

ies that would otherwise overlap in time or space. Moreover, recent

ethodological advances, not specific to the EEG domain, offer vari-

us computational solutions to recover a set of source signals 1 from the

ixed signals recorded at the sensor level. These are termed Blind Source

eparation (BSS). BSS-based analyses are able to unmix most sources of

he ongoing brain activity without a priori knowledge about the source

ignals or the mixing process. Additionally, source localization is a class

f methods that aim to retrieve the anatomical generator(s) of an ob-

erved EEG activity. It relies on an inverse problem that, as an ill-posed

roblem, is non-unique and unstable (i.e., cannot be solved but only es-

imated). However, when applied on “clean ” unmixed signals, source

ocalization offers the opportunity to take full advantage of the spatial

nformation contained in the EEG signal ( He et al., 2018 ; Huster and

alhoun, 2018 ; Michel and Murray, 2012 ). 

To summarize, the discriminative power of EEG analyses relies on

hree axes that are mutually beneficial: the temporal, spectral, and

patial dimensions ( Fig. 1 ). Here, we perform a systematic survey of

EG studies investigating how the different methodological options that

ight contribute to disentangling brain activities confounded in the EEG

ignal have been employed to address current theoretical issues about

eward processing. In other words, we aimed to check whether the full

ower of EEG has been exploited in the field. Specifically, we report

n (1) the nature of the cognitive processes investigated (reward an-

icipation vs reward outcome processing) and (2) the methods used to
1 Note that in the context of blind source separation, “source ” should not be 

nderstood as an anatomical generator, but a functional generator. See section 

Considering spatial information: localization and source separation ” for discus- 

ion. 
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ollect and process the EEG data. Based on the results, we argue that

 large proportion of previous studies investigating reward processing

ave used EEG in a suboptimal way. Indeed, we show that (1) reward an-

icipation has been overlooked and (2) the three axes for discriminative

ower have been unequally leveraged, revealing that some methodolog-

cal developments have not been widely adopted by the field yet. We

hen discuss and illustrate with selected examples how doing so could

ring novel insights to the field. 

. Systematic analysis 

.1. Methods 

We searched the Pubmed and Web of Science databases for EEG stud-

es of reward processing on 8/10/2019. To be included, studies had to

1) include a group of healthy subjects; (2) involve the delivery of mon-

tary rewards; (3) report statistical analyses of brain activity related to

he anticipation and/or receipt of rewards. Based on these criteria, 359

rticles (out of 2469 retrieved records) were considered for our survey.

etailed information about the selection process as well as a flow chart

re provided in the Supplementary Materials. 

The following information was extracted from the abstracts or

ethod sections of these articles: (1) nature of the cognitive processes in-

estigated, i.e. reward anticipation and/or reward outcome processing;

2) methods used to collect and process the EEG data, i.e. technique used

e.g., EEG, EEG-fMRI…), and presence of ERP, time-frequency and/or

ource analyses. We chose to extract this information regarding data

rocessing because it captures the use of the three axes for discrimina-

ive power of EEG. Indeed, while both ERPs and time-frequency analyses

ake use of the temporal dimension, only time-frequency analyses ex-

loit the spectral dimension. By source analyses, we here refer to the

ethods that can contribute to enhanced spatial information, in partic-

lar source separation and/or localization methods. 

.2. Results 

Among the 359 surveyed studies, a majority was interested in reward

utcome processing (88%, 316 studies) as compared with reward antic-

pation (24%, 86 studies). While 92% (331 studies) reported ERP anal-

ses, only 19% (70 studies) reported time-frequency analyses. Twelve

ercent (44 studies) performed source analyses (here meant as source

eparation and/or localization), and only 2% (8 studies) performed both

ime-frequency and source analyses. Finally, 4% of studies used EEG

ombined with another neuroimaging technique (EEG-fMRI: 14 stud-

es, EEG-Magnetoencephalography (MEG): 1 study, EEG-PET: 1 study).

igs. 2 and 3 display the evolution of these proportions over the last 20

ears. 

. Considering the diversity of reward processes 

Our analysis revealed that EEG studies have investigated reward

utcome processing more often than reward anticipation (88% vs

4%, Fig. 2 ). Incidentally, it is interesting to note that the field of

EG has mostly relied on gambling/guessing tasks (e.g., Gehring and

illoughby, 2002 ; Kujawa et al., 2013 ) as well as reinforcement learn-

ng tasks (e.g., Bellebaum et al., 2010 ; Cohen et al., 2007 ), well-suited

o investigate reward outcome processing, while the field of fMRI has

een more strongly influenced by paradigms such as the Monetary In-

entive Delay task ( Knutson et al., 2000 ) which was specifically devel-

ped to investigate anticipatory processes. We speculate that the over-

epresentation of EEG studies investigating reward outcome processing

ight result from the combination of a theoretical interest for a trendy

ssue and the ease of use of available tools and markers. Indeed, the

eld has historically focused on the feedback-related negativity (FRN)

nd other feedback-related ERPs in the context of error processing and

earning, in particular in relation with the influential reward prediction
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Fig. 1. The discriminative power of EEG relies on the exploitation of three analytical dimensions. The EEG signal recorded at the sensors is a time-series, which 

can be resolved along different analytical dimensions. (A) The high temporal resolution of the recorded time-series allows one to examine how it unfolds with time 

( temporal dimension) as well as its underlying oscillatory rhythmicity ( spectral dimension). Considering the spectral content of the signal can help to distinguish brain 

processes or functions, because these may occur in different frequency bands. These two dimensions are often examined in isolation, using ERP analyses (that ignore 

the spectral dimension), or spectral analyses (that ignore the temporal dimension). ERP and static spectrum at electrode FCz are shown as illustrations. The third 

dimension, spatial , is reconstructed from the known position of the different sensors on the scalp. It is often considered as the weakness of EEG, and hence ignored. 

Indeed, while the topography of scalp activity can be examined (here, topography at 210ms is shown as an example), it may be poorly informative due to volume 

conduction. Yet, a range of solutions is available to take full advantage of the spatial information hidden in the scalp signal, including source separation and source 

localization methods. (B) Optimal discriminative power may be obtained when the three dimensions -temporal, spectral, spatial- are leveraged in combination, e.g., 

by using time-frequency analyses (that combine the temporal and spectral dimensions to examine event-related changes in the amplitude and phase of oscillations 

at specific frequencies) performed in the source space. Illustrations show, for two distinct sources, the static spectrum, back-projected ERP (at electrodes B4 and 

FCz, respectively), time-frequency map, topography, and localization (obtained using sLORETA). All illustrations are adapted from Albares et al., 2014 . The reader 

is referred to the main text for details about the different signal processing options presented here. 

Fig. 2. EEG studies investigating reward outcome processing vs. reward antici- 

pation. Much more studies have investigated reward processing at the outcome 

stage (by means of analyses of the feedback period, using comparisons such as 

win vs. loss or small vs. large gain), as compared with reward anticipation (for 

instance, analyses of the cue period, using comparisons such as expected win 

vs. expected loss). 

e  

G  

t  

a  

w  

w  

t

Fig. 3. EEG studies of reward processing made unequal use of the three dimen- 

sions for discriminative power. Most studies over the last 20 years have relied 

on ERP analyses. In contrast, time-frequency and source analyses have been 

performed by only a minority of studies. This demonstrates limited use of the 

spatial and spectral information. Note that no clear temporal evolution in the 

proportion of studies using ERPs, time-frequency analyses or source analyses 

can be seen. 
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rror (RPE-FRN) framework ( Holroyd and Coles, 2002 ; Sambrook and

oslin, 2015 ; Walsh and Anderson, 2012 ). Only later, the focus shifted

o reward processing per se ( Foti and Weinberg, 2018 ), putting reward

nticipation in the spotlight. Additionally, reward anticipation processes

ere initially associated with subcortical areas ( Schultz et al., 1997 ),

hich logically made EEG a less appropriate technique to investigate

hem, due to the difficulty of reaching deep brain areas. 
3 
Consistent with our observation, Glazer et al. (2018) noted that EEG

tudies neglect the “rich temporal heterogeneity of reward processing ”,

y focusing on the reward outcome stage and disproportionately re-

ying on the FRN. Glazer et al. thus called for “broadening the time

ourse ” of EEG components investigated in relation to reward process-

ng. Based on the data presented here, we fully endorse this recommen-
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ation. It should be emphasized that the high temporal resolution of

EG is particularly valuable here, since the brain signals related to re-

ard anticipation and reward outcome processing are often problemati-

ally confounded when studied with fMRI, due to the sluggishness of the

OLD signal (e.g., Pornpattananangkul and Nusslock, 2016 ). However,

broadening the time course ” may not be sufficient. Below, we discuss

ther equally important limitations that the field must overcome for us-

ng EEG in an optimal way to disentangle the neurocognitive processes

f reward. 

. Considering oscillatory components 

Although the informativeness and added value of time-frequency

nalyses have been previously highlighted in the context of re-

ard processing and feedback learning ( Cohen et al., 2011b ; Marco-

allarés et al., 2015 ), our systematic survey reveals that a large majority

f studies keeps relying on ERPs to date, with only a small minority of

tudies reporting time-frequency analyses (e.g., in 2018, 37 out of 41 pa-

ers reported ERP analyses, while only 9 reported time-frequency anal-

ses; Fig. 3 ). The problem is that ERP analyses are intrinsically limited

n the insight they can provide about the neurocognitive mechanisms

upporting reward processing. 

The first reason is that ERP analyses only exploit a small part of

he information contained in the EEG signal, as they ignore the spec-

ral information and cancel out non-phase locked activity. For exam-

le, the ERPs following reward receipt show two characteristic com-

onents, the FRN and P300. Time-frequency analyses have shown that

hese components correspond to overlapping phase-locked delta and

heta oscillatory activities ( Bernat et al., 2015 , 2011 ; Cohen et al.,

007 ). But, in the same time range ( ∼250-450ms), time-frequency

nalyses have also shown a clear increase in high-beta band activ-

ty (20-35Hz) at frontal electrodes for gains compared with losses

 Cohen et al., 2007 ; Doñamayor et al., 2012 ; HajiHosseini et al.,

015 , 2012 ; HajiHosseini and Holroyd, 2015 ; Marco-Pallares et al.,

008 ; Marco-Pallarés et al., 2009 ; Mas-Herrero et al., 2015 ). Be-

ause this high-beta band activity is induced rather than phase-locked

as revealed by analyses considering evoked and induced activity

eparately, Li et al., 2016 ; or by using phase coherence analysis,

ohen et al., 2007 ), it does not contribute to the ERPs. More gener-

lly, it is common for high frequency oscillatory activity to be induced

ather than phase-locked, and it is therefore rarely captured by ERP

nalyses. 

The second reason is what is termed the component overlap issue.

s summarized by Luck (2014) , an ERP component is often conceptual-

zed as “a scalp-recorded neural signal that is generated in a specific

euroanatomical module when a specific computational operation is

erformed ” (p.66). In practice though, the EEG signal is a mixture of

 number of different brain activities (because of their inherent tem-

oral and/or spatial overlap, and because of volume conduction). As a

onsequence, ERP waveforms at the scalp are most often composed of

everal overlapping signals from different generators ( Luck, 2014 ). As

 result, the components under scrutiny (which are classically defined

ased on peaks and troughs in these waveforms) often have unclear gen-

rators. For example, the FRN is generally believed to be generated by

he anterior cingulate cortex, but the contribution of other generators

s still a matter of debate, even while this is the most studied EEG fea-

ure in the context of reward processing ( Walsh and Anderson, 2012 ).

lso, the functional meaning of ERP components can also be obscured

ecause of overlapping cognitive operations. For example, the FRN was

amed as such because it was first understood as a negativity present

n loss and not in gain conditions, but it was later suggested to reflect

 positive-going deflection that would be present only in gain condi-

ions, and would sum up with the “standard ” response to feedback, a

200 ( Holroyd et al., 2008 ; Proudfit, 2015 ). In other words, the FRN

as thought to be due to the addition of a loss-related process, be-

ore being reinterpreted as being due to the addition of a gain-related
4 
rocess ( Proudfit, 2015 ). To work around the component overlap is-

ue, some of the studies analyzed here have used difference waves or

rincipal component analysis (e.g. Foti et al., 2011a ; Sambrook and

oslin, 2016 ). However, the issue of whether these outputs reflect a

iscrete process still stands ( Dien, 2012 ; Luck, 2014 ). Considering spec-

ral information provides an efficient solution capitalizing on the fact

hat temporally or spatially co-occurring processes may occur in differ-

nt frequency bands. For instance, time-frequency analyses have shown

hat the FRN harbors two overlapping components (i.e., increased phase-

ocked delta activity to gains and increased phase-locked theta activity

o losses) that have different generators and relate to different aspects

f reward processing ( Foti et al., 2015 ). It was also demonstrated that

he phase-locked delta and theta activities giving rise to the ERPs wave-

orms in the FRN-P300 time range reflect more independent processes

han their ERP counterparts ( Bernat et al., 2015 , 2011 ; Watts et al.,

017 ). However, time-frequency analyses are not a magic-wand solu-

ion to the component overlap issue. Volume conduction still applies,

nd there is obviously no one-to-one mapping between frequency bands

nd cognitive processes. There are numerous possible generators of a

ingle oscillation, and a single oscillation potentially reflects different

rocesses in different circuits ( Cohen, 2017a ; Karaka ş and Barry, 2017 ).

n other words, there may be situations where a same frequency band

upports different processes that are close in time and/or space (see e.g.

as-Herrero and Marco-Pallarés, 2016 for an illustration of co-occurring

edial frontal theta band activities supporting distinct feedback-related

rocesses). 

Importantly, oscillations have a direct neurophysiological signifi-

ance, and are not a mere by-product of brain function ( Buzsáki and

raguhn, 2004 ). As a consequence, studying oscillations allows to adopt

 more mechanistic perspective, as they can be directly linked to neu-

ophysiological phenomena (see Cohen et al., 2011b for instance for a

iscussion in the context of feedback learning). In particular, they are

hought to play an important role in neuronal communication, by allow-

ng synchronization within local neuronal populations or between dis-

ant brain areas ( Bonnefond et al., 2017 ; Buzsáki and Draguhn, 2004 ;

anolty and Knight, 2010 ; Fries, 2015 ; Varela et al., 2001 ). As such,

tudying oscillations offers a glimpse into the neural computations un-

erlying cognitive processes ( Donner and Siegel, 2011 ; Karaka ş and

arry, 2017 ; Lopes da Silva, 2013 ; Siegel et al., 2012 ). In the context

f reward processing, it has been proposed that the high-beta band ac-

ivity following reward feedback may be a mechanism supporting the

oupling within a frontostriatal-hippocampal network involved in the

rocessing of unexpected or highly-relevant rewards in the context of

earning ( Marco-Pallarés et al., 2015 ; Wang et al., 2019 ). We note that

his kind of network perspective justifies the use of connectivity anal-

ses (see Bastos and Schoffelen, 2015 ; He et al., 2019 for reviews of

onnectivity approaches for EEG data). Indeed, EEG (or MEG) connec-

ivity analyses are the only way to uncover rapid network dynamics non-

nvasively in humans (with the limitation that deep brain components

f the target network may be more challenging to assess, see section

Considering spatial information: localization and source separation ”).

owever, they are rarely performed in EEG studies of reward process-

ng. 

In conclusion, time-frequency analyses are a valuable complemen-

ary approach to the traditional ERP analyses, since scanning the fre-

uency spectrum can provide a much more detailed picture of brain

eward processing. We note that studies of reward anticipation using

ime-frequency analyses are particularly scarce (22 out of 359 sur-

eyed studies to date, e.g., Pornpattananangkul and Nusslock, 2016 ;

einhart and Woodman, 2014 ). Importantly, because time-frequency

nalyses alone do not circumvent the component overlap issue, it

s essential to go beyond the study of power modulations in a spe-

ific frequency band at one or several electrodes. Rather, source sep-

ration and in-depth source-space analyses should be considered to

et maximal discriminative power in the study of neurocognitive

rocesses. 
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Box 1 

Source localization issues. 

The generators of brain electric fields are macroscopic post-synaptic potentials created by synchronized populations of pyramidal cells oriented perpendicularly to the 

cortical surface ( Jackson and Bolger, 2014 ). The EEG signal thus captures only part of the neural activity of interest, and requires caution for functional interpretation of 

the localization of its generators. Nonetheless, when using dipole modelling -an approach that aims to model the recorded activity with a single or a few dipoles on the 

basis of a priori assumptions with respect to the number of these dipoles (model-driven inverse solutions)-, source localization is fatally biased if the number of dipoles is 

misestimated ( Michel and Brunet, 2019 ). In contrast, distributed source modelling discretizes the source space into a large number of locations in the brain volume. It 

estimates the amplitude of all equivalent current dipole locations simultaneously to recover the source distribution with minimum overall energy that best fits scalp 

measurements (minimum norm solutions). This class of data-driven inverse solutions is theoretically more appropriate when the number of dipoles to model is unknown, 

which is particularly the case when complex cognitive tasks are used or when data are very noisy ( Hauk and Stenroos, 2014 ; He et al., 2018 ; Yao and Dewald, 2005 ). 

Based on the observation that minimum norm solutions are biased toward superficial sources, weighting parameters have been introduced and form the class of weighted 

minimum norm solutions on which successful tools like sLORETA are based ( Pascual-Marqui, 2002 ). These methods are accurate from a mathematical point of view in 

ideal noise conditions ( Greenblatt et al., 2005 ; Pascual-Marqui, 2007 ; Sekihara et al., 2005 ). But despite convincing empirical comparisons, it is difficult to validate the 

accuracy of each solution for real EEG data ( Grech et al., 2008 ), and issues of physiological plausibility remain. For instance, distributed methods which use norm 

constraints applied to the overall source space might provide too smooth solutions to be perfectly realistic ( Pascual-Marqui et al., 2002 ). Moreover, representing an 

active segment of the cortical sheet by a small subset of focal dipoles can raise some issues of biological interpretability. 
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2 When applied to source signals, vector autoregressive (VAR) models are use- 

ful tools for assessing information flow through lagged dependencies between 

source signals (e.g., Directed Transfer Function, Kaminski and Blinowska, 1991 ; 
. Considering spatial information: localization and source 

eparation 

EEG is reputed as having poor spatial resolution. In the traditional

RP approach, spatial information is thus simply ignored, by averag-

ng the signal at one or several electrodes ( Michel and Murray, 2012 ).

ndeed, drawing conclusions from electrodes’ position could be mislead-

ng, as there is no straightforward correspondence between the position

f the electrode(s) at which an EEG feature is best observed and the

rain area(s) generating it (i.e., an ERP which has a fronto-central to-

ography does not necessarily have fronto-central areas as main genera-

ors). Source localization methods were developed to exploit the spatial

nformation contained in the EEG signal, with the aim of countering the

ffects of volume conduction. These methods allow one to estimate the

natomical generators of an EEG feature of interest, based on head mod-

ls and resolution of the inverse problem, for which several approaches

xist (see He et al., 2018 for review, and Box 1 for details). 

In our survey, 19% of studies used source localization, with most

iming to localize the source of ERPs. However, because ERPs are most

ften composed of several signals from different generators (the com-

onent overlap issue, see previous section), this approach runs the risk

f lacking precision in most cases regardless of the computational re-

iability of the localization method used (e.g., Pascual-Marqui, 2002 ).

s a consequence, uncertainties remain in studies using source local-

zation to track the anatomo-functional bases of reward processing. For

xample, while many studies suggest that the anterior cingulate cor-

ex is the main generator of the FRN (e.g., Bellebaum and Daum, 2008 ;

ehring and Willoughby, 2002 ; Hewig et al., 2007 ; Luu et al., 2003 ;

olezzi et al., 2010 ; Potts et al., 2006 ; Ruchsow et al., 2002 ; Zhou et al.,

010 ), some suggested a wider picture, by revealing a range of other

otentially contributing generators (e.g., the inferior frontal gyrus,

artin and Potts, 2011 ; Ruchsow et al., 2002 ; the superior frontal gyrus,

ellebaum and Daum, 2008 ; the medial or superior temporal cortex,

ellebaum and Daum, 2008 ; De Pascalis et al., 2010 ; Kokmotou et al.,

017 ). 

Unmixing the signals contributing to the overall electrical activity

ecorded on the scalp therefore appears as a major issue to disentan-

le the underlying neurocognitive mechanisms that are, by virtue of

heir overlap in time and space, potentially mixed in the experimen-

al design. Blind source separation (BSS) methods can tackle this is-

ue ( Makeig et al., 2002 ). BSS is a data-driven ensemble of techniques

riginally from signal processing sciences, with a wide range of appli-

ations besides neuroscience ( Comon and Jutten, 2010 ). In particular,

SS methods allow the separation of intermixed sources without a pri-

ri knowledge about the source signals or the mixing process. Thus,

hen applied to EEG data, they assume no a priori biophysical or to-

ographical information. In other words, here the term “sources ” does

ot refer to anatomical generators, but to functional entities that are

eparated based on their statistical properties (see Box 2 for details). In

ractice, source separation provides the researcher with a set of source
 P

5 
stimates, which are composed of reconstructed source activities and

opographies. By working directly on source activities, it is possible to

ove from classical electrode-space analyses to source-space analyses

either time-frequency or ERP analyses). Besides, topographies (i.e., the

patial projection of the source to the scalp) can be fed to source local-

zation algorithms ( Figure 4 ). Although separated on the basis of their

tatistical properties, the components resulting from BSS can still be ex-

ected to reflect the activity of distinct cortical areas ( Delorme et al.,

012 ). For this reason, applying source localization on separated sources

an maximize the use of the spatial information contained in the EEG

ignal ( Onton et al., 2006 ). As an example, the current density map (ob-

ained through distributed source modeling) of an ERP recorded at the

calp might be difficult to interpret when it is itself composed of a large

umber of generators that are distant and whose dynamics are not per-

ectly aligned in time. Separating (and localizing) sources might help

o disentangle the different neural activities contributing to the over-

ll ERP recorded at the scalp, thus limiting the superposition between

eurocognitive mechanisms when interpreting current density maps. In-

eed, BSS has proven useful in decomposing ERP responses into distinct

vents (e.g., Bridwell et al., 2015 ; Onton et al., 2006 ). 

Source-space analyses offer other advantages. Because the signal of

nterest is better isolated, the method provides access to less energetic

ut potentially interesting features of the data that may be missed with

lassical analyses ( Sutherland and Tang, 2006 ). Moreover, since connec-

ivity analyses performed at the sensor level are compromised by vol-

me conduction patterns, connectivity measures may best be derived

rom source activities after BSS ( Brunner et al., 2016 ; Schoffelen and

ross, 2009 ) 2 . Despite these advantages, source separation and source-

pace analyses have been used by only one of the surveyed studies

 Silvetti et al., 2014 ). In this study, independent component analysis was

sed to isolate one component for each subject on the basis of a topog-

aphy consistent with a medial frontal source and an activity consistent

ith the error-related negativity (an ERP that is time-locked to the mo-

or response and more negative following errors, and is believed to be

enerated by the medial frontal cortex). The activity of this component

as then assessed during reward anticipation and outcome processing

eriods, providing arguments for the hypothesis that the same medial

rontal source could be responsible for encoding error-related processes

s well as reward expectation and prediction error. 

To enhance spatial information, another possibility is to combine the

illimeter resolution of fMRI with the unique ability of EEG to probe fast

eural dynamics ( He et al., 2018 ). This has been done by 14 (4%) of the

tudies included in our analysis, using a variety of approaches. For exam-

le, Mas-Herrero et al. (2015) used joint independent component anal-

sis and showed that the high beta band activity induced by gains cor-
artial Directed Coherence, Baccalá and Sameshima, 2001 ). 
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Box 2 

Blind source separation general principles and applications. 

Numerous BSS approaches and algorithms can be applied to EEG signal processing in order to unmix potential overlapping neural processes. In contrast to source 

localization methods, these approaches do not aim to localize the generators based on biophysical assumptions. Rather, the general method relies on the assumption of a 

certain degree of independence between sources. Independent Component Analysis (ICA) is the most popular approach ( Hyvärinen et al., 2001 ). It decorrelates the 

signals and reduces higher-order statistical dependencies in order to make the source signals as independent as possible ( Delorme et al., 2007 ; Onton and Makeig, 2006 ). 

Various higher order statistics (HOS) algorithms use data distribution characteristics to perform the decomposition, with the main separation criteria being maximization 

of non-gaussianity (e.g., FASTICA, EFICA) or minimization of mutual information (e.g., INFOMAX, ExtINFOMAX). These algorithms decompose the EEG signal obtained 

from a specific number of electrodes into the same number of statistically maximally independent components. They are robust to Gaussian noise in the dataset but 

temporal information is lost. Second order statistics algorithms (SOS; e.g., SOBI, UWSOBI, WASOBI, AJDC; Sutherland and Tang, 2006 ; Tang et al., 2006 , 2005 ) are 

interesting alternatives. They use time-frequency information to perform the decomposition, with spectral diversity as the main separation criterion. Indeed, they allow 

applying BSS on shorter time intervals and are more robust with respect to outliers ( Congedo et al., 2008 ; Lio and Boulinguez, 2013 ; Tang, 2010 ). 

Choosing a BSS method is not trivial. For instance, HOS-based BSS algorithms are optimal for removing non-brain artifacts and most of the Gaussian noise from the data 

(e.g., Lio and Boulinguez, 2013 ), while the benefits of SOS-based BSS algorithms in the temporal domain are well-suited for capturing trial-to-trial variations and 

analyzing single-trial ERPs ( Sutherland and Tang, 2006 ; Tang et al., 2011 ; Zhang et al., 2014 ). SOS-based BSS is also especially adapted to group BSS, a method which 

aggregates data from all subjects to form a unique estimation of the mixing matrix for the whole group ( Congedo et al., 2010 ; Eichele et al., 2011 ; Huster et al., 2015 ; 

Kovacevic and McIntosh, 2007 ; see Huster & Calhoun, 2018 for a special issue on multi-subject decomposition of EEG). Group BSS solves one of the major concerns with 

source separation, which is generalization across subjects. Indeed, when using BSS at the individual level, single-subject components have to be selected by hand (e.g., 

based on topography and time course similar to an ERP of interest, Silvetti et al., 2014 ) or matched across subjects by means of clustering algorithms for group analysis. 

This introduces subjectivity (in the selection or when setting the criteria for clustering), and difficulties with statistical analyses when only a subset of subjects 

contributes to a cluster. Indeed, because of interindividual anatomo-functional variability, building a unique mixing matrix for a group of subjects on the basis of their 

aggregated data violates the mandatory assumption that the mixing matrix is stationary ( Lio and Boulinguez, 2018 , 2013 ). Yet, SOS-based algorithms are more robust to 

mixing matrix distortions, leading more easily to generalization when similar spectral patterns are identified at neighboring locations, as compared with HOS-based 

algorithms which show a tendency for overlearning and over-separation (extraction of spurious information from non-stationary events) ( Lio and Boulinguez, 2018 , 

2013 ). Importantly, even though using group BSS with SOS-based algorithms like SOBI allows direct matching of functionally equivalent components across subjects on 

the basis of their spectral signature, it does not prevent from analyzing the inter-individual variability of these sources by using the group filter to extract and compare 

individual component time-series ( Huster and Raud, 2018 ). 

Fig. 4. Source separation at a glance. Source separation allows to unmix most sources of the ongoing brain activity. In practice, source separation returns the estimated 

source signals and topographies. Working directly with the source signals allows switching from classical electrode-space analyses to source-space analyses, regardless 

of the kind of analysis one aims to perform (ERP or time-frequency analyses). Besides, the source topographies can be used for localization (see text for details). 
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esponds to the engagement of a fronto-striatal-hippocampal network

dentified with fMRI, providing support for previous hypotheses ( Marco-

allarés et al., 2015 ). Using regression of oscillatory power changes onto

OLD signal changes, Mas-Herrero and Marco-Pallarés (2016) showed

hat the sensitivity of midfrontal theta band activity to outcome va-

ence and unsigned prediction error was correlated with the activation

f the supplementary motor area and dorsomedial prefrontal cortex, re-

pectively. Given the close proximity of these subregions of the medial

rontal cortex, it would have been difficult with EEG alone to determine

hat the sensitivity of theta band activity to these variables reflects the

ngagement of two distinct regions rather than that of one single region

ncoding both processes. 

Finally, the fact that a substantial part of the reward network is sub-
ortical calls for a word of caution. While some authors have claimed i  

6 
hat part of the reward feedback-related EEG activity may be generated

y the striatum ( Carlson et al., 2011 ; Foti et al., 2011a , 2015 ), the possi-

ility to access subcortical, deep activity with EEG remains highly con-

roversial (see Cohen et al., 2011a ; Foti et al., 2011b for discussion) and

annot be considered as a genuine opportunity yet (but see Attal et al.,

012 , 2009 ; Seeber et al., 2019 ). In any event, it is reasonable to con-

ider that the activity we can observe with EEG is mostly cortical. Be-

ause of this major limitation of the EEG technique, standard and com-

lementary neuroimaging tools will still be highly needed in the future.

. Conclusion 

Our survey of the literature reveals that a majority of EEG stud-

es on reward processing have been designed to investigate how ex-
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Box 3 

How advanced methods in EEG analysis can help answer outstanding questions on reward processing. 

• Using time-frequency and connectivity analyses to uncover the oscillatory mechanisms supporting the integration and transfer of information within the reward 

network 
• Using source-space connectivity analyses to unravel the interaction between the reward network and the attentional, executive, or motor networks, that mediates the 

behavioral effects of reward 
• Using source-space analyses to identify precise markers of neurocognitive dysfunctions in pathology (e.g., major depressive disorder, substance use disorder, 

behavioral addiction; McLoughlin et al., 2014 ) 
• Leveraging the three axes for the discriminative power of EEG to isolate motivational from motor and attentional processes during reward anticipation (e.g., 

Reinhart and Woodman, 2014 ) 
• Exploiting the fine temporal resolution of EEG to separate the brain signals related to reward anticipation and reward outcome processing, that are often 

problematically confounded when studied with fMRI (e.g., Alicart et al., 2015 ) 
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erimental manipulation of feedback valence, likelihood or magnitude,

mong other attributes, impacts the FRN amplitude ( Glazer et al., 2018 ;

ambrook and Goslin, 2015 ; Walsh and Anderson, 2012 ). This approach

rovides limited insight. First, it overlooks reward anticipation. Sec-

nd, investigating variations of one ERP at one or a few electrodes ig-

ores a lot of the (spatial and spectral) information contained in EEG

ignal, providing a biased perspective on how the brain actually pro-

esses rewards. Indeed, time-frequency analyses of reward outcome pro-

essing unsurprisingly showed that different processes are confounded

e.g., those reflected in the evoked delta and theta band activities) or

issed (e.g., those reflected in the induced beta band activity) in classi-

al time-domain analyses. Paying more attention to reward anticipation

nd employing more recent methodological advances as discussed here

ill undoubtedly help to build a more comprehensive picture of the neu-

ocognitive mechanisms underlying reward processing. We believe that

t can help answer outstanding questions on reward processing ( Box 3 ).

We want to highlight that, even though the analyses we describe

ere are more difficult to apply than classical ERP analyses, and may

lso require more resources (e.g., time, or data storage capacity), they

re now greatly facilitated by available software (e.g., Fieldtrip, EEGlab;

ee Michel and Brunet, 2019 for a list of packages including source lo-

alization tools). Still, some precautions should be taken when apply-

ng them, as soon as the initial setup of the experiment. For instance,

ource localization requires higher density recordings (at least 64 elec-

rodes, Seeck et al., 2017 ), efficient source separation needs long con-

inuous time-series (e.g., Lio and Boulinguez, 2013 ), and accessing sub-

le features of the data requires a large number of trials (e.g. while 20

rials are enough to obtain a stable FRN in healthy subjects - Marco-

allares et al., 2011 -, a minimum of 50 can usually be recommended

or time-frequency analyses, Cohen, 2017b ). For more details, we refer

he reader to the useful recommendations made in all the listed refer-

nces of interest. 

In conclusion, because EEG is inexpensive, non-invasive, and

ortable, there is great interest in using EEG features as potential

iomarkers of cognitive processes or pathologies. We believe that us-

ng the methods discussed here could provide more precise and inter-

retable markers in reward studies. 
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