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In episodic encoding, an unfolding experience is rapidly transformed into a memory representation that binds separate episodic
elements into a memory form to be later recollected. However, it is unclear how brain activity changes over time to accommodate
the encoding of incoming information. This study aimed to investigate the dynamics of the representational format that contributed to
memory formation of sequential episodes. We combined representational similarity analysis and multivariate decoding approaches on
EEG data to compare whether “category-level” or “item-level” representations supported memory formation during the online encoding
of a picture triplet sequence and offline, in the period that immediately followed encoding. The findings revealed a gradual integration
of category-level representation during the online encoding of the picture sequence and a rapid item-based neural reactivation of the
encoded sequence at the episodic offset. However, we found that only memory reinstatement at episodic offset was associated with
successful memory retrieval from long-term memory. These results suggest that post-encoding memory reinstatement is crucial for the
rapid formation of unique memory for episodes that unfold over time. Overall, the study sheds light on the dynamics of representational
format changes that take place during the formation of episodic memories.
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Introduction
An important challenge in neuroscience is to understand how
learning systems operate to rapidly transform an ongoing expe-
rience into bound episodic memory traces that can be recollected
at long term.

Traditionally, human episodic memory research answered this
question by focusing on experiments using single items as studied
material and analyzing the neural underpinnings that predicted
their successful retrieval during the online encoding (i.e. when
stimuli to be remembered were present) (Paller and Wagner 2002).
This research showed that the same brain regions and patterns
of activity that are engaged during memory “encoding” of an
item tend to be reinstated during subsequent memory “retrieval”
(Staresina et al. 2012, 2016; Ritchey et al. 2013; Gordon et al.
2014; Danker et al. 2017), suggesting that remembering relies
on reactivating the initial neural representations elicited online
during encoding. Alternatively, another set of studies using single
pictures as a studied material has emphasized that successful
memory encoding involves a substantial transformation of early
representations elicited during perception (Liu et al. 2021). Indeed,
it has been shown that within the first few hundred milliseconds,
brain activities gradually and progressively change from repre-
senting low-level visual information to higher order categorical
and semantic information (Clarke et al. 2018), and that these
transformed semantic representational formats contributed to

stable short-term memory maintenance (Liu et al. 2020). While
these two lines of research evidence highlight the dynamic rep-
resentational nature that accounts for how the brain encodes
single items in memory, it is also relevant to understand how these
representational dynamics operate in the context of a sequential
episodic encoding, akin to a more realistic scenario whereby the
retrieval of an event involves remembering the elements that
were encoded in the unfolding experience.

In the current study, we sought to investigate the representa-
tional format that accounts for successful encoding of episodic
sequences in memory. The use of episodic sequences allows us
to investigate an important question that has been largely over-
looked in the literature: how does brain activity change over
time to accommodate the encoding of incoming information?
Specifically, we aimed to examine whether successful encoding
is supported by the preservation of the representational acuity
or idiosyncrasy of each of the elements within a sequence or,
alternatively, if it better requires an undergoing representational
transformation of each of the elements so that they become
integrated into a bound but semantic representational structure.
In addition, we also aimed to investigate whether the immedi-
ate offline period after the completion of a sequential episode
contributes to successful encoding. This is motivated by recent
research that showed that brain mechanisms that followed online
encoding of a continuous stream of stimuli offer an “optimal”
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window to register in memory a bound representation of an
episode (e.g. Lu et al. 2022). Here, we hypothesize that one such
offline neural mechanism promoting the binding of the elements
of a sequence episode in memory is the rapid reactivation of
them in a temporally compressed manner. Rodent studies showed
that neural replay at quiescent periods immediately after single-
trial spatial experiences supports the formation of high-fidelity
representation of the encoded trajectory in memory (Foster and
Wilson 2006). More recently, research in rodents pointed to a
semantic aspect to replay, since it has been shown that novel
information is added to the replay memory of a track upon
subsequent re-exposures to it (Berners-Lee et al. 2022). In line
with the animal literature, human literature has recently shown
that representations of just-ended events are reactivated upon
the completion of an event (Wu et al. 2022) or at event boundaries
(Sols et al. 2017; Silva et al. 2019). However, these studies did
not discern whether memory reinstatement of the just-encoded
episode and its impact on retrieval relies on reactivating the initial
neural representations elicited online during encoding or, alterna-
tively, whether it strengthens the transformation of early encoded
episodic material into a more semantic, abstract representation.
Thus, an important question that remains unresolved relates to
the representational format of this offset-locked neural activity
supporting later recollection of the just-encoded experience.

We recorded scalp electrophysiological (EEG) signals, while
participants encoded trial-unique combinations of face-object-
scene picture triplet sequences to be subsequently recalled in
a test. Leveraged by the high temporal resolution of the EEG
recording and the analytical power of representational similar-
ity analysis (RSA) and multivariate decoding, we examined the
dynamics of the representational format that contributed to suc-
cessful episodic memory formation. The combination of these
two analytical approaches allowed us to discern whether different
types of memory representations, namely “category-level” and
“item-level,” supported memory during the online encoding of
the triplet sequence and offline, in the period that immediately
followed encoding. Our results demonstrate the time course and
the functional relevance of the different representational formats
that have an impact on memory formation, thus help advance our
understanding of how the brain rapidly transforms the unfolding
experience into bound episodic memory traces.

Materials and methods
Participants
Thirty-two native Spanish speakers were recruited for the current
experiment and compensated e10 per hour for their participa-
tion. All participants had normal or corrected-to-normal vision
and reported no history of medical, neurological, or psychiatric
disorders. Two participants were excluded from the study due to
technical problems during the EEG recordings. Data from 30 par-
ticipants (17 females; age range 18–32 years, M = 23.77, SD = 4.38)
were analyzed. Informed consent was obtained from all partic-
ipants in accordance with procedures approved by the Ethics
Committee of the University of Barcelona.

Stimuli
The experimental design included 312 images (350 × 350 pixels
each): 104 images of famous faces (52 male and 52 female), 104
images of famous places, and 104 object images. Famous face and
scene images were selected from a larger sample of the image
database consisting of 284 and 184 pictures of each category,
respectively. The selection was carried out by a separate sample of

10 Spanish university students (5 females; age range 21–39 years)
who rated their familiarity with each image on a scale from 1 to
4 (1: Not recognized; 2: Familiar; 3: Recognized but do not know
the name; 4: Know the name). The final set of 104 face and place
images were those that received the highest mean score from 10
external raters (mean score equal to or higher than 3.44 for males,
2.89 for females, and 2 for places). The 104 objects were selected
from available object-picture databases and covered 6 categories
(clothing, food, tools, transport, work, and leisure). Among the 312
images, 60 images (20 object images, 20 face images of famous
people, and 20 images of famous places) were randomly selected
for the localizer phase. For the main task, 36 images (12 object
images, 12 face images, and 12 place images) were used for
example trials and the rest 216 images (72 object images, 72 face
images, and 72 place images) were used for the encoding trials;
this separation was kept the same across participants.

Experimental design
The experiment consisted of the localizer phase and the task
phase. In the localizer phase, 60 images (20 faces, 20 scenes, and
20 objects) were presented in random order to participants. Each
trial started with a 1,000-ms fixation cross, followed by a 2,500-ms
image presentation. A text displayed on the screen then indicated
the need for the participants to state the category of the just-
presented image (Fig. 1). Participants had a maximum of 10 s to
respond. The next trial started immediately once a response was
given or the maximum time limit was passed. There was a brief
break between every 20 trials when participants could briefly rest
and decide to continue whenever they felt ready.

The task phase started after the localizer phase. The task phase
included 6 blocks, each of them including an encoding task, a
psychomotor vigilance task (PVT), and a retrieval test. Each block
was independent of the other, meaning that the images presented
in one block were never shown in any other blocks. However,
the task instructions and their order of alternation remained
the same across all blocks. In the encoding task, participants
were instructed to encode 12 series of three images, namely an
object (O), a famous face (F), and a famous place (P). Participants
were encouraged to construct stories using triplet elements in
the form of a narrative (e.g. Iniesta went to Paris and purchased
an expensive belt), and they were informed that the triplet infor-
mation would be tested later. In total, 72 triplets were randomly
generated for each participant from 216 images (72 object images,
72 face images, and 72 place images), and each image was used
only once in the experiment. In each block, the presentation
order of the image categories in a series was fixed (e.g. always
ordered as Face-Place-Object in one block). There are in total 6
possible presentation orders, each of which was used in one of
the 6 blocks with no repetition and randomly generated for each
participant. At the beginning of each block, two example trials
were presented, indicating the order of presentation of the image
categories. Participants were instructed to use the two example
trials to rehearse the upcoming series encoding in the block
and told that the example trials would not be tested later. Each
encoding trial began with the presentation of the text “New Story”
for 3,000 ms, which marked the start of a new triplet series. Triplet
images were then presented sequentially on a white screen for
2,500 ms each after a 1,000-ms black fixation cross. Immediately
after the presentation of the last image in each triplet, a blue
asterisk appeared on the screen, indicating a postepisode offset
period of 3,500 ms, during which participants were instructed
to avoid rehearsing the just-encoded triplet series. Instructing
participants not to rehearse the just-encoded episode served a
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Fig. 1. Experimental design. For the localization task, 60 different images from 3 categories (face, place, and object) were presented. Participants were
asked to indicate the image category. The encoding phase consisted of an image of an object, a famous face, and a famous place. Participants were
asked to construct stories using the three elements for a later memory test. A blue asterisk appeared at the end of each triplet and participants rated
their subjective sense of difficulty for story construction. For the PVT, participants were instructed to pay attention to the center of the screen, waiting
to react at the onset of a text timer by pressing the “space” button. In the recall phase, there were 12 recall trials, each of which used the first image of
the previously presented triplets to cue the free recall of the other two images. One block was completed after the retrieval phase and the next block
started following a brief break. The experiment consisted of 6 blocks in total.

dual purpose. First, it helped minimize the active maintenance
memory processes in the working memory. Second, it aimed to
simulate naturalistic episodic memory formation circumstances
where rehearsal is not a regular occurrence at the end of an
episode. The asterisk remained visible on the screen during the
offset period. Participants were then asked to provide a degree
of subjective feeling of the difficulty of constructing a coherent
episode with the just-presented triplet of images by a button press
on a scale from 1 (“very easy”) to 4 (“very difficult”). The next trial
began immediately after a response was given, or no response was
given after a time limit of 10 s. A small break of ∼10 s was provided
after completing 6 trials.

A block of the PVT task followed the encoding phase. In each
PVT block, participants were instructed to pay attention to the
screen’s center and press the space button as quickly as possible
once the timer started counting. The task commenced with the
text presentation “New Task” for 3,000 ms. Then, an empty red
square was displayed at the center of the screen following a 1,000-
ms fixation cross. After a random interval of between 5 and 15 s,
the timer started counting in the middle of the square indicating
the real passing time in milliseconds. The timer counted to a
maximum of 3,500 ms if no response was given. Once the partic-
ipants pressed the button during the counting period, the timer
stopped with the presentation of the final reaction time in the
center of the screen for 2,000 ms. In cases where no response to
the timer was given within the time limit, the presentation would
be the final counting time of the timer (i.e. 3,500 ms). The new
PVT trial started immediately after the reaction time presenta-
tion. In total, 12 repetitions of response were required with no
interruption in the middle. A block of a PVT task lasted around
3 min. The PVT task served as a distractor task adding a brief
time interval between the encoding and the upcoming retrieval
phase. It had the advantage of maintaining the attentive state
of the participants and preventing them from actively rehearsing
the just-encoded episodic sequences, and at the same time, it did
not engage participants in any content encoding as the task is
primarily reaction-based.

The PVT task was followed by a cued-recall task. During this
task, participants were presented with the first image of all the
encoded triplets in the current block in random order. They were
required to verbally recall the story episode containing the other
two images associated with the cue image. Each trial began with
the text “New Recall” for 3,000 ms, followed by the cue image
on the screen for 2,500 ms and a 1,000-ms fixation cross. The
text “Explain the story” was then displayed on the screen, which
indicated to the participants that they could start the verbal
recall. The verbal recall had a maximum duration of 30 s, during
which the text instruction remained visible on the screen all the
time. Participants could skip to the next trial when finished with
their recall or if they were unable to recall any associated image
by pressing the space bar. A brief break of ∼20 s separated the
start of the next block.

EEG recording and pre-processing
During the experiment, EEG was recorded with a 64-channel
system at a sampling rate of 512 Hz, using a eego™ amplifier
and Ag/AgCl electrodes mounted in an electrocap (ANT neuro)
located at 59 standard positions (FP1/2, AF3/4, Fz, F7/8, F5/6, F3/4,
F1/2, FCz, FT7/8, FC5/6, FC3/4, FC1/2, Cz, T7/8, C5/C6, C3/4, C1/2,
CPz, TP7/8, CP5/6, CP3/4, CP1/2, Pz, P7/8, P5/6, P3/4, P2/1, POz,
PO7/8, PO5/6, PO3/4, Oz, O1/2) and the left and right mastoids.
Horizontal and vertical eye movements were monitored with elec-
trodes placed at the right temple and the infraorbital ridge of the
right eye. Electrode impedances were kept below 10 kΩ. EEG was
re-referenced offline to the linked mastoids. Bad channels were
interpolated, and a band-pass filter (0.5–30 Hz) was implemented
offline. Blinks and eye movement artifacts were removed with
independent component analysis before the analysis.

Behavioral data analysis
During the retrieval phase of the experiment, participants
were instructed to verbally recall the constructed story episode
associated with the picture cue. Verbal recall of each trial was
recorded through an audio recorder, and the audio files were
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later analyzed. A successful recall of the image was considered as
either correctly mentioning the name or describing it in precise
detail. Memory for each triplet was quantified by the number of
images correctly recalled, namely 0, 1, or 2 images successfully
recalled following the cue.

EEG data analysis
For each participant, we extracted epochs of EEG activity sur-
rounding pictures presented in the localizer and the encoding
tasks. These EEG trial epochs had a duration of 2,500 ms (1,280
data points given the 512 Hz EEG recording sampling rate), and
they were baseline corrected to the prestimulus interval (−100 to
0 ms). For later analysis, we focused on the first 2,000 ms of the
trial epochs from stimulus onset. We also extracted EEG epochs
of 3,500 ms (1,792 data points) from the offset period following
the encoding of each triplet series. EEG signal from the offset
period was baseline corrected to the −100 to 0 ms averaged EEG
activity. EEG trial epochs that exceeded ±100 μV were discarded
for further analysis. EEG trials were then Gaussian smoothed by
averaging data via a moving window of 100 ms (excluding the
baseline period) and then downsampled by a factor of 5.

Representational similarity analysis
RSA was performed timepoint-to-timepoint and included spatial
features (i.e. scalp voltages from all 59 electrodes) (Sols et al.
2017; Silva et al. 2019; Wu et al. 2022). The similarity analysis
was calculated using Pearson correlation coefficients, which are
insensitive to the absolute amplitude and variance of the EEG
response.

We conducted a trial-based RSA between the EEG signal elicited
by each encoding item (1st, 2nd, and 3rd, regardless of the image
category) and the EEG signal elicited at the offset period following
the encoding of the triplet series. After smoothing and down-
sampling, EEG epoch data elicited by each picture in the triplet
included 205 sample points (given the 512-Hz EEG recording sam-
pling rate) covering the 2,000 ms of picture presentation and EEG
data from posttriplet offset contained 359 time points, equivalent
to 3,500 ms. Point-to-point correlation values were then calcu-
lated, resulting in a 2D similarity matrix with the size of 205 × 359,
where the x-axis represented the episodic offset time points and
the y-axis represented the picture encoding time points. The out-
put 2D matrix depicted the overall degree of similarity between
EEG patterns elicited by each encoding image and the subsequent
postepisodic offset interval.

We applied the same approach to explore the neural similarity
between encoding items (1st, 2nd, and 3rd) in the sequence. To do
so, we separately conducted RSA between the 1st item and the 2nd
item, also between the 2nd item and the 3rd item. Point-to-point
correlation values were then calculated on smoothed and down-
sampled EEG epoch data, resulting in a 2D similarity matrix with
the size of 205 × 205, where the y-axis represented the encoding
time points of the items appeared earlier in the sequence (i.e. 1st
or 2nd item) and the x-axis represented encoding time points of
the items appeared later in the sequence (i.e. 2nd or 3rd item).

To account for RSA differences between conditions, we
employed a nonparametric statistical method (Maris and
Oostenveld 2007), which identifies clusters of significant points
on the resulting 2D similarity matrix and corrects for multiple
comparisons based on cluster-level randomization testing.
Statistics were computed on values between conditions for each
time point, and adjacent points in the 2D matrix that passed
the significance threshold (P < 0.05, two-tailed) were selected
and grouped together as a cluster. The cluster-level statistics

took the sum of the statistics of all time points within each
identified cluster. This procedure was then repeated 1,000 times
with randomly shuffled labels across conditions. Cluster-level
statistics with the highest absolute value for each permutation
were registered to construct a distribution under the null
hypothesis. The nonparametric statistical test was calculated
by the proportion of permuted test statistics that exceeded the
true observed cluster-level statistics.

We also examined whether possible RSA effects (i.e. at cluster
level) that could be seen when comparing successful and unsuc-
cessful conditions in the previous analysis were trial-specific or
whether they reflect task-specific patterns of correlation between
online and offline encoding time periods. In other words, we
aimed to assess whether RSA in the same trial between image
encoding and offset period from the same trial was higher than
RSA between image encoding and offset periods from different
trials. To assess these issues statistically, we ran the RSA indi-
vidually and separately for successful and unsuccessful memory
conditions by randomly shuffling the paring of EEG data from a
given triplet and an offset period. This procedure was repeated
200 times, each with a randomly generated shuffling order. The
results were then averaged across permutated trials for the iden-
tified cluster and compared with the real cluster value using a
repeated-measure ANOVA.

Linear discriminant analysis
To identify the multivariate pattern of brain activity for image
processing of different categories, a Linear Discriminant Anal-
ysis (LDA) was trained and tested on the EEG sensor patterns
of localizer trials (preprocessed signal amplitude from 59 chan-
nels). The classifier was trained independently per participant
and at each time point during localizer image presentation, then
tested with a leave-one-out cross-validation procedure. Given that
three categories were included in the current experiment (face,
place, and object), at the training stage, the classifier was trained,
repetitively, three times, including each possible pair out of the
three classes. For each of the two classes, the classifier found
the decision boundary that best separated the pattern activity.
We then asked the classifier to estimate the unlabeled pattern
of brain activity for each of the three decision boundaries (one
for each pair of classes). The output of the classifier for each
two trained classes at a given time point was the distance value
to the decision boundary, which represents how probable the
pattern of brain activity belonged to one of the two included
classes, with the sign indicating the class and the magnitude
reflecting the confidence of the classifier. The distance value for
each pair of classes was then sigmoid transformed to get the
probability of either class that unlabeled pattern activity belonged
to (e.g. a distance value of 0 will return 50% for either class).
After normalizing and averaging values across the three possible
pairings, the class with the highest probability was marked as the
final label for the testing data. To access the general separability
between the three classes in a compound measure, we defined
a separability index (D-value) as the sum of the absolute of the
three distance values to each of the decision boundaries (i.e. used
to threshold the classification decision for each pair of classes),
with the assumption being that the greater the separability index,
the higher the probability that the given activity pattern belonged
to a specific class rather than assimilating to all three classes with
equal distinctiveness (i.e. closer to zero).

This training-test procedure was repeated until every single
localizer trial had been classified. The predicted labels for all
trials at every given time point were then compared with the true
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classes to assess the accuracy of the classifier across all localizer
times.

To evaluate how face, object, and scene category representa-
tions accounted for EEG patterns elicited during picture encoding
and at the offset period, we first identified the time point where
the cross-validation of the classifier reached the peak accuracy.
Using patterns of activity surrounding 10 time points around the
peak (− 50 to 50 ms with the peak time point in the middle), we
then trained the classifier per participant with all localizer trials
and predicted all sample points separately for encoding and offset
trials. The results were then averaged across localizer time points,
resulting in a 1D separability index (D-value) line for each trial
where each sample point represented the encoding/offset time
points.

Note that for all the LDA analyses in this study, the training
set and test set for each participant were z-transformed for each
channel and each timepoint across all the trials before the appli-
cation of LDA.

Linear-mixed effect model
To further explore how the separability of pattern activity
between picture categories changed along the encoding sequence
and whether it is predictive for behavioral memory on a trial
basis, we implemented a Linear Mixed Effect Model (LMM) on the
resulting general distance value of each encoding image classified
by patterns trained on trials from the localizer task. We further
smoothed the resulting 1D distance value for each predicting
encoding trial by averaging over a moving window of 200 ms, then
introduced in our LMM the D-value at each time point as the
dependent variable, then both the image order in triplet series
(1st, 2nd, and 3rd) and recall memory (successfully recalled 2
images following the cue or not), as well as the interaction of the
two as fixed effect variables. Subject was introduced in the model
as the grouping variable, with random intercept and a fixed slope
for each fixed effect variable. The statistical significance was
then evaluated using Bonferroni correction for each fixed effect
variable at each timepoint thresholded with an adjusted alpha
level of α = 2.44 × 10−4 (0.05/205).

Results
Localization task
For the localization task, 26 out of 30 participants reached 100%
accuracy in identifying the image category, and the mean accu-
racy across the 30 participants was 99.72% (SD = 0.77%).

Recall of picture triplets
Participants were able to recall on average 1.12 pictures
(SD = 0.37) following the cue, with the mean percentage of
trials recalling 0, 1, and 2 items being, respectively, 35.61%
(SD = 16.41%), 16.30% (SD = 6.52%), and 48.09% (SD = 20.68%)
(Fig. 2a). Separated by the category of item, we found that face
as a to-be-recalled item (i.e. not the first picture in the triplet
series) was better remembered (Mean = 62.15%, SD = 17.70%)
compared with place (Mean = 51.84%, SD = 19.98%) and object
(Mean = 54.70%, SD = 19.25%) (repeated measures ANOVA:
F(2,58) = 24.379, P < 0.001). Relatedly, there was a significant
difference in recall performance depending on the category order
of the triplet series. More concretely, we found that encoding
blocks that included triplets with face as the first picture (i.e.
Face-Place-Object or Face-Object-Place) were less accurately
recalled (Face-Place-Object: mean = 0.928, SD = 0.527; Face-
Object-Place: mean = 0.906, SD = 0.434) than triplets from blocks

where place (Pace-Face-Object: mean = 1.250, SD =0.429; Pace-
Object-Face: mean =1.222, SD = 0.427) or object (Object-Face-
Place: mean = 1.222, SD = 0.430; Object-Place-Face: mean = 1.225,
SD = 0.443) was presented first (repeated measures ANOVA:
F(5,145) = 9.810, P < 0.001). We also found that the average number
of images recalled upon the picture cue did not vary between
blocks, indicating that encoding and retrieval accuracy did not
vary throughout the task (repeated-measures ANOVA with block
number as the main factor: F(5,145) = 0.356, P = 0.878).

For RSA analysis, we adopted a median-split approach to sep-
arate the trials based on whether the entire triplet images were
correctly retrieved. Triplets with 2 images recalled after the cue
were labeled as successful recall, and triplets with either 1 image
or no image recalled were labeled as unsuccessful recall. The aver-
age percentage of trials was, respectively, 48.09% (SD = 20.68%) for
successful recall condition and 51.91% (SD = 20.68%) for unsuc-
cessful recall condition (Wilcoxon signed-rank test: z = −0.43,
P = 0.67).

Participants’ ratings of encoding difficulty
On average, triplets were rated as 2.24 (SD = 0.47) (on a scale that
ranged from 1: no difficulty to 4: very difficult), and the mean
percentage of triplets rated as 1, 2, 3, and 4 was, respectively,
27.91% (SD = 21.73%), 33.79% (SD = 13.80%), 24.65% (SD = 13.13%),
and 13.65% (SD = 12.03%). Based on the median-split criteria,
difficulty ratings for trials with successful recall (mean = 2.26 and
SD = 0.48) and for trials with unsuccessful recall (mean = 2.22 and
SD = 0.51) did not differ statistically between each other (paired
Student t-test: t(29) = 1.01, P = 0.32, two-tailed) (Fig. 2b).

RSA between item sequence and episodic offset
at encoding
We first examined the existence of encoding-offset neural
similarity differences between trials that were successfully or
unsuccessfully recalled. This analysis revealed that EEG patterns
elicited during the encoding of picture triplets that were later
recalled showed, compared with unsuccessfully recalled trials, a
higher degree of neural similarity during the episodic offset period
(Fig. 3a and b). This result was corroborated statistically with
the cluster-based permutation test, which showed one cluster
of increased neural similarity starting at ∼200 ms at offset period
(P < 0.001 (corrected), mean t-value = 2.45, peak t-value = 4.92)
(Fig. 3b). We next evaluated encoding-offset neural similarity
corresponding to each element in the sequence. We extracted
the mean similarity values within the identified cluster for each
item–offset pair and computed a repeated-measures ANOVA
with two factors: Trial Condition (successful vs. unsuccessful
recall) and Item Order (1st, 2nd, and 3rd in the sequence).
The results of this analysis showed a significant main effect
for Trial Condition, F(1, 28) = 19.171, P < 0.001, and a marginally
significant main effect for Item Order (F(2, 56) = 3.047, P = 0.055),
and no interaction between the two main effects (F(2, 56) = 0.368,
P = 0.694). Pairwise comparisons showed marginally significantly
higher mean cluster similarity values for 3rd item in the
sequence (mean = 0.028, SD = 0.011) as compared with the 1st
(mean = 0.012, SD = 0.008, P = 0.05) and 2nd item (mean = 0.011,
SD = 0.009, P = 0.053) (Fig. 3c).

We next tested whether the RSA effects seen when comparing
successful and unsuccessful conditions were trial-specific. To
address this issue, we ran RSA by shuffling the encoding-offset
pairing 200 times and obtained for each individual a similarity
value that represented task- rather than trial-specific RSA effects.
To evaluate whether real and shuffled RSA effects differed
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Fig. 2. Behavioral results. a) Percentage of trials as a function of numbers of images correctly retrieved during free recall. b) Subjective rating of the
difficulty of triplet encoding separated by whether or not the triplet was later successfully recalled (with both images associated with the cue being
correctly recalled). Each dot on both plots represents the value for an individual in the corresponding condition. Each gray line on the boxplot connects
the value of an individual in two conditions.

from each other statistically, we conducted a repeated-measure
ANOVA with two main factors, Trial Condition (successful vs.
unsuccessful recall) and RSA condition (true vs. permutated
value). We found a significant main effect for Trial Condition
(F(1,29) = 16.47, P < 0.001) and RSA condition (F(1,29) = 4.75, P = 0.037),
as well as the interaction of the two main factors (F(1,29) = 12.41,
P = 0.001) (Fig. 3d). These results indicated that the RSA showed
a trial-specific property only for successfully remembered
trials.

Classification accuracy and separability of
picture category
We adopted the LDA approach to classify and predict the image
category being processed based on the elicited EEG pattern in the
localizer task. The classifier was trained independently per partic-
ipant and at each time point during picture encoding, then tested
with a leave-one-out cross-validation procedure. Two output val-
ues were extracted for each time of training/testing, namely the
category of tested data predicted by the model with the highest
probability among three alternatives (i.e. accuracy) and a general
distance value (D-value) of tested data to the classification plane
among categories (i.e. separability) (Fig. 4a).

The results of this analysis showed that picture category could
be reliably predicted rapidly at picture onset (i.e. ∼130 ms),
showing a peak classification accuracy at ∼180 ms (t29 = 8.41,
Pcorr < 0.001) (Fig. 4b).

As expected, the pattern separability analysis showed simi-
lar temporal dynamics to the accuracy ones. More specifically,
pattern separability became significant as the distance value
increased compared with surrogate trials, with the difference
emerging from ∼170 ms. D-value reached the local maximum
at, respectively, ∼180 ms (D = 6.57, t29 = 5.032, Pcorr = 0.005) and at
∼380 ms (D = 6.60, t29 = 7.25, Pcorr < 0.001) (Fig. 4c).

Gradual integration of picture category
information during sequence encoding
We examined whether the sequential encoding of pictures from
different categories in the encoding task would involve a gradual
integration of the just-encoded images from the sequence and
whether this process predicted memory recall. To address this

issue, we extracted the −50 to 50 ms EEG pattern surrounding
the peak (i.e. at 180 ms from picture onset; Fig. 4b) LDA accuracy
during the encoding of images in the localizer task. We then used
these EEG patterns as the training data in a new LDA and tested
on EEG patterns elicited at each time point from each picture from
the sequence on the encoding task.

We then averaged across all training time points at trial level
and included the resulting distance value at each time point of
encoding into LMM as the dependent variable. For each trial,
the memory condition (successful vs. unsuccessful recall), the
encoding order of the image in the triplets (i.e. 1st, 2nd, and 3rd),
and the interaction of the two were included in the model as
fixed-effect variables. Subject was introduced into the model as
the grouping variable, with random intercept and a fixed slope
for each fixed-effect variable.

This analysis showed that the D-value correlated negatively
with the order of picture in the sequence (Fig. 5a) and that such
effect emerged during ∼460–520 ms and ∼590–920 ms after pic-
ture onset. However, we found that D value did not correlate with
later trial memory at the test nor the interaction of picture order
and memory. This suggested that the picture category integrative
process takes place during sequence encoding and that this had
no impact on the later ability of the participants to retrieve the
sequence episode. Different from the D-value, the classification
accuracy showed a similar pattern as a function of the order
of pictures in the sequence (Fig. 5b). To control for the possibil-
ity that the observed effect was not merely due to a decrease
in the specific category classification accuracy as a function
of the order of the picture in the sequence, we extracted the
mean accuracy across image order within the time window where
the significant decrease in pattern separability was identified.
A repeated-measure ANOVA showed significantly above-chance
accuracy value (F(1,29) = 32.4, P < 0.001) with no main effect for
image order (F(2,58) = 0.004, P = 0.99) (Fig. 5c). Jointly these results
indicate that while the classifier continued to predict the image
category accurately, the decrease in the D-value as the triplet
series unfolded reflects a gradually reduced pattern separability
among categorical representations during image encoding, sug-
gesting an integration process associating the upcoming stimulus
representation to the previous ones.
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Fig. 3. RSA for image at encoding and post-encoding. a) Time-resolved degree of neural similarity between image encoding and posttriplet offset for trials
with successful subsequent recall (upper) and unsuccessful recall (lower). b) Difference between similarity values for the two conditions. Statistically
significant (P < 0.05, cluster-based permutation test) higher similarity value was found for trials with successful recall centered in one area (indicated
by black contour lines). c) Averaged RSA values within the cluster separated by successful and unsuccessful subsequent recall for each encoding item.
The central mark is the median across participants and the edges of the box are the 25th and 75th percentiles. Each black dot represents values for an
individual participant. d) Averaged true RSA vs. shuffled RSA values within the cluster separated for trials with successful and unsuccessful subsequent
recall. Each dot on the plots represents the value for an individual in the corresponding condition.

Having shown that categorical information is gradually
integrated during encoding, we aimed to investigate the potential
for unique and individual representations to evolve over time.
To achieve this goal, we conducted RSA between the encoding
items within the sequence (as described in Materials and Methods
section) (Fig. 5e). Our findings revealed that neural similarity
between the encoding items was greater for the item pair that
emerged later in the sequence (i.e. 2nd with 3rd) in comparison
to the item pair that emerged earlier in the sequence (i.e. 1st
with 2nd) (P < 0.001, corrected by cluster-based permutation,
mean t-value = 3.067, peak t-value = 8.141) (Fig. 5f). These results
supported the notion of a gradual formation of an integrated rep-
resentation as the sequence progressed. To further assess whether
the increase in between-item similarity as the sequence unfolded
was linked to memory performance at test, we calculated

the mean similarity values within the identified cluster for each
of the two between-item pairs, separately for trials that were
successfully and unsuccessfully recalled at test. We conducted a
repeated-measures ANOVA on the mean similarity values within
the cluster across participants, with two factors: Encoding Stage
(early vs. late) and Trial Condition (successful vs. unsuccessful
recall). Our analysis revealed a significant effect for Encoding
Stage (F(1,29) = 19.38, P < 0.001), but no effect for Trial Condition
(F(1,29) = 0.53, P = 0.472) nor a significant interaction between the
two factors (F(1,29) = 0.82, P = 0.372) (Fig. 5g). These results suggest
a gradual integration of idiosyncratic representations at the item
level during encoding, similar to the integration process indicated
by LDA for categorical information. Furthermore, this integration
process does not directly influence how effectively these items
will be retrieved at test.
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Fig. 4. Two cross-validated LDA classifier output measures using localization trials. a) Abstract illustration of the classifier output calculation. The
distance value for each pair of classes was sigmoid transformed to get either class’s probability. The class with the highest probability after normalizing
and averaging values across three pairs was marked as the final label for the testing data (left). The general distance value (D-value) was defined as the
sum of the absolute of the three distance values to each of the decision boundaries (middle). Pattern examples 1 and 2 can be both classified accurately
as “face” images. However, pattern example 2 also showed a more similar pattern to the “place” and “object” categories, which a smaller D-value can
indicate. b) Classifier accuracy estimated using the leave-one-out method. Image categories can be reliably decoded compared with surrogate trials
starting around ∼130 ms after image onset, with peak value reaching ∼180 ms. c) Pattern separability among image categories quantified by the general
distance value, which evolved similarly across time compared with the accuracy measure. D-value reached the peak at ∼180 and ∼380 ms. In plots b)
and c), the shaded area indicated SEM across participants, and statistical significance compared with surrogate trials was Bonferroni-corrected and
marked in dark gray line.

Picture sequence integration and memory at
episodic offset period
We next examined whether an integrated form of the just encoded
sequence could predict memory for the episode right after its
online encoding, that is, once the encoding ended, at the offset
period. If this was the case, we should observe that D-value
was reduced at the offset period for successful compared with
unsuccessful recalled picture sequences.

To address this issue, we again extracted the EEG pattern
elicited during ∼130–230 ms (−50 to 50 ms surrounding the
peak classifier accuracy at 180 ms from picture onset) by picture
presentation in the localizer task. We applied it to each time
point of the postepisodic offset period. The resulting D-value from
the classifier was then averaged across all training timepoints.
We further smoothed the resulting 1D distance value trial by
averaging over a moving window of 200 ms and then separated D-
values for successful and unsuccessful memory trial conditions
and averaged them for each participant. Statistical comparisons
between conditions were assessed and then reassessed with a
cluster-based permutation approach.

The analysis revealed that the D-value remained stable during
the offset period, as depicted in Fig. 6. Cluster-based statistics
did not pinpoint a specific time frame in which successfully
recalled trials differed significantly from unsuccessfully recalled
ones. This suggests that the categorical representation formed
during encoding is not enhanced at offset and that the level

of categorical information integration is not linked to memory
performance.

Discussion
The current study examined the dynamics of the representa-
tional format that contributed to successful episodic memory
formation. The combination of RSA and multivariate decoding
approaches on EEG data allowed us to systematically compare
whether “category-level” or “item-level” representations sup-
ported memory formation during the online encoding of a picture
triplet sequence and offline, in the period that immediately
followed encoding. Our findings revealed a gradual integration
of category-level representation during the online encoding of
the picture sequence and a rapid item-based neural reactivation
of the encoded sequence at the episodic offset. However, we found
that only memory reinstatement at episodic offset was associated
with successful memory retrieval from long-term memory,
thereby indicating that post-encoding memory reinstatement is
akin to the rapid formation of unique memory for episodes that
unfold over time.

Research in the field of visual object recognition has shown
that perception involves dynamic transformations of information
from low-level visual inputs to higher level visual properties
and ultimately complex semantic representations (Kravitz et al.
2013). This research has revealed that incoming information flows
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Fig. 5. Representational dynamics and transformation during sequence encoding. a) Across participants averaged D-value (i.e. degree of category
separability) during encoding as a function of the order of image in the sequence (upper) with statistical significance Bonferroni-corrected for the
main effect of image order, subsequent memory, and their interaction (lower). Shaded gray area and light gray dashed line marked the significance
threshold boundaries (two-tailed) adjusted by Bonferroni correction. Time window where the main effect passed the threshold was marked in dark
gray line below. b) Across participants averaged LDA accuracy during encoding as a function of the order of pictures in the sequence. c) LDA accuracy
averaged across the time window where a significant effect for image order was found. Category of image was classified equally accurate across image
order (P = 0.99) yet significantly above chance (gray dashed line) (P < 0.001). Each black dot represents values for an individual participant. d) Abstract
illustration of the speculated integration process. While the classifier continued to predict the image category accurately, there was a trend for an
“integrated” pattern indicated by a gradually decreased pattern separability. e) Time-resolved degree of neural similarity between encoding items for
1st with 2nd item (upper) and 2nd with 3rd item (lower). f) Difference between similarity values for late-stage items pair (2nd with 3rd) vs. early-stage
item pair (1st with 2nd). Statistically significant (P < 0.05, cluster-based permutation test) higher similarity value was found for late-stage items pair
centered in one area (indicated by black contour lines.). g) Mean similarity values within the identified cluster between encoding items. Each black dot
represents values for an individual participant. Late-stage items pair in the sequence (2nd with 3rd) showed significantly greater similarity as compared
with early-stage items pair (1st with 2nd). The central mark is the median across participants and the edges of the box are the 25th and 75th percentiles.

through lower to higher order brain regions during encoding,
with more abstract information represented in the higher order
areas. Meanwhile, the higher order regions interact with the lower
level regions to reshape the representations according to task
requirements or assimilate them into pre-existing knowledge
representations (Xue 2022). Interestingly, it is widely accepted
that the encoding of the different representational formats occurs

rapidly but temporally organized in the brain, so that visual object
recognition starts with low-level perceptual followed by high-level
abstract processing (Serre et al. 2007; Carlson et al. 2013; Cichy
et al. 2014; Lehky and Tanaka 2016). Our findings are consistent
with previous research that relied on the implementation of
pattern classification algorithms on EEG or MEG data in show-
ing that category level representations can be detected at early
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Fig. 6. Pattern separability during posttriplet offset period predicted by
LDA classifier trained on localization trials. There is a consistent level
of separability between categories throughout the offset period. Cluster-
based statistics do not show a time window in which a statistically sig-
nificant difference between successful and unsuccessful trials is found.
Shaded area indicated SEM across participants.

time windows from image presentation onset (Cichy et al. 2014;
Jafarpour et al. 2014; Wimmer et al. 2020). Our results contributed
to this literature by showing that category-level representation
associated with picture items in a sequence can be accurately
detected with consistent time intervals and precision throughout
the sequence.

Our findings contribute to our understanding of how category
level representations associated with items from a sequence are
integrated as the sequence unfolds. Concretely, we found a grad-
ual process of integrative encoding of category-level represen-
tation. Specifically, we observed a gradual process of integrative
encoding of category-level representations. The category repre-
sentation of the second picture was found to be more similar to
the category representation of the first item, while the category
representation of the third picture integrated category-level rep-
resentations from both the preceding second and first pictures
in the sequence. This observation was quantifiable in our study
because instead of registering only the output from the classifier,
generally defined as the predicted class with maximal likelihood
among possible alternatives, we used it to develop an index that
quantified the classifier’s ability to distinguish among all the
possible classes at a given time point, the degree of separability
or the D-value. In other words, the D-value expresses the degree
to which a tested neural pattern assimilated or deviated from
all the possible trained categories. It is important to note that
the gradual decrease in pattern separability as a function of
picture order in the sequence was not accompanied by changes in
pattern classifier accuracies. Thus, the observed gradual decrease
in pattern separability cannot simply be attributed to a weak
classification performance. It should be noted that the different
interpretations drawn from the two measures of the classifier,
namely accuracy and D-value, are based on their distinct metrics.
The accuracy measure refers to the prediction output of the
classifiers as a categorical index, which depends on the relative
comparison between the introduced classes, with the class having
the largest distance to classification hyperplane being the winner.
However, from a more general aspect, it does not provide any
information about how close the to-be-predicted data to other
classes’ neural patterns are. By summing up the absolute values
of the distance to all the introduced class neural patterns, the
D-value provides a quantitative measure of how distinct in gen-
eral the introduced data pattern is to all the classes, sensitive

to the global changes in brain activity with respect to all the
categories during encoding, a speculation the current study was
particularly interested in.

One plausible neurobiologically based explanation of the grad-
ual decrease in pattern separability as a function of picture order
in the sequence may be attributed to an attenuated neural activity
by prior expectation, given that participants could anticipate the
category of the upcoming image since the order of presenta-
tion was fixed within each block. Though prior studies revealed
that anticipation might reduce response in neurons tuned for
expected stimulus (Kok et al. 2013; Kumar et al. 2017), mul-
tivariate approaches have instead shown a “sharpening” effect
for perceptual representations in cortical regions due to a more
selective population response (de Lange et al. 2018), resulting
in a more accurate pattern classification (Kok et al. 2013). Our
findings that the decrease in picture category pattern separa-
bility is taking place at ∼500 ms from picture onset, however,
may not be explained by “sharpening” effects because they are
thought to occur earlier in the temporal course of processing
(i.e. <400 ms from stimuli onset). Instead, we argue that the
gradual reduction in pattern separability (i.e. decrease in the D-
value) but preserving the category-based discriminative accu-
racy (i.e. similar pattern classification accuracy) following the
sequential presentation of images reflected a continuously addi-
tive category-specific processing, which promoted the encoding of
multiple categorical information in parallel, supported by various
overlapping cortical regions. In fact, different yet overlapping
cortical regions (e.g. various regions on the lateral surface of
occipitotemporal cortex) are selectively sensitive to stimuli from
different categories when presented in isolation, including face,
objects, and scenes (Silson et al. 2016). In naturalistic scenarios,
the processing of multiple categories of information embedded
in the encoding experience takes place simultaneously, and the
neural signature of such processes can be decoded in different
cortical regions (Cooper and Ritchey 2020). In the context of our
study, the ongoing need to associate each appearing picture with
the previously encoded pictures from the sequence may have
promoted integrative processes online during the encoding of the
picture.

We found no significant relationship between the degree of
integration of item- or category-based representations during
encoding and their later retrieval. However, we did find that
the extent to which item-based information was reactivated
at the episodic offset, just after the encoding of the sequence
was completed, was a reliable predictor of a participant’s ability
to recall the episodic trace from long-term memory. These
results are in line with fMRI literature using different input
types such as picture sequences (DuBrow and Davachi 2014),
short video clips (Zacks et al. 2001; Ben-Yakov and Dudai 2011;
Ben-Yakov et al. 2013), and movies (Baldassano et al. 2017;
Ben-Yakov and Henson 2018) that highlighted the sensitivity of
the hippocampal-neocortical system to detect episodic offsets
and its link to memory formation. In addition, the present
findings add additional support to scalp EEG evidence of memory
reactivation of just-encoded events upon the completion of an
event supports successful memory formation (Sols et al. 2017;
Silva et al. 2019; Wu et al. 2022). The current data however
extend them by uncovering the representational format of this
offset-locked neural activity. More specifically, our data suggest,
consistent with studies on rodents (Foster and Wilson 2006),
that memory formation of single-trial sequential episodes is
facilitated by the reactivation of high-fidelity representations
of the encoded episodic sequence in memory. These results
contrast with human studies, such as Liu et al. (2021), which
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found that memory reactivations during delay periods involv-
ing short-term memory maintenance transform the original
representation into a more semantic representational format.
Notably, while participants in our task were instructed to rest
and refrain from rehearsal, participants in Liu et al. (2021)
were actively maintaining the encoded information during the
delay period. An interesting hypothesis to explore in future
research would be that neural reactivation immediately after
encoding can flexibly adjust the representational format of
the replayed information in accordance with task goals. This
would be consistent with recent findings in humans, which
showed that the representational structure of replayed memories
during a task shifted depending on whether the task required
planning or preservation of the just-encoded information
(Wimmer et al. 2023).

In conclusion, we found a gradual integration process of per-
ceptual representations as encoding experience unfolded and
the neural mechanisms elicited in the episode offset period to
promote the memory formation of episodic sequences. These
findings contribute to an emerging understanding of the mecha-
nism by which episodic information is encoded and subsequently
retrieved. Current models emphasized the dynamic representa-
tional formats through which the brain transforms our experience
into a memory trace. Our findings contribute to this important
issue by showing that different representational formats are flex-
ibly used during online and offline periods by the brain to support
memory formation for episodic sequences.
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