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Abstract 
Societal structures and theoretical models of memory organization share network-like 
features, suggesting potential mutual insights into how information spreads and shapes 
collective memories. Here, we used experimental manipulations of the topological 
structure in lab-created community networks during a computer-mediated 
conversational recall task of lists of words from a DRM paradigm to test a central 
premise from the spreading of activation account in cognitive psychology: the 
emergence of true and false memories. We hypothesized that social network structure, 
whether clustered or not, would influence the formation of true and false memories. We 
found that information exchange promoted true memories in clustered networks by 
reinforcing the mnemonic convergence of the community members’ memories. 
Conversely, nonclustered networks lead to a greater number of false memories by 
increasing widespread cross-activation of nonoverlapping memories, blurring the 
boundaries between true and false memories. Current findings provide empirical 
evidence that mnemonic spreading within the social network influenced the emergence 
of true and false memories and highlight the dynamic interplay between network 
topology, memory dynamics, and collective knowledge evolution, shedding light on 
memory processes in both individual and social contexts. 
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Introduction 
 

Human societies are structured as interconnected social networks, fostering the 
exchange and dissemination of information between directly and indirectly connected 
individuals and groups. How groups (small or large) share and remember their group’s 
past shapes their collective narratives, traditions, and identity (Hirst et al., 2018; 
Roediger et al., 2019; Wertsch & Roediger, 2008). Similarly, in cognitive psychology, 
the notion that memories are built in a network-like structure through which the 
activation of one node propagates throughout associated nodes constitutes a component 
in extant theoretical models of memory and cognition (Anderson, 1983; Collins & 
Loftus, 1975; McClelland & Rumelhart, 1985; Roediger & McDermott, 1995). 
Memories, much like individuals within a community, are closely linked to the 
interconnected elements of their network, thereby sharing the possibility of being 
influenced by the concurrent activation of other network nodes. Hence, an intriguing 
avenue of inquiry would involve examining the common organizational and propagation 
properties between societal and memory structures, potentially providing mutual 
explanatory insights. 
 

One strategy for exploring how social networks and memory interact involves 
delving into how memories take shape through social communication. Notably, the act 
of recalling shared experiences in conversation leads to the synchronization of memories 
among individuals participating in the interaction (Coman et al., 2009; Congleton & 
Rajaram, 2014; Greeley et al., 2023). As these influences originating at the individual 
level become integrated into a larger network of social interactions, they contribute to 
the emergence of collective memories (Coman et al., 2016; Hirst & Echterhoff, 2012; 
Luhmann & Rajaram, 2015; Yamashiro & Hirst, 2014). Prior investigations have shown 
that the influence exerted by one individual over another can propagate through the 
network, affecting the extent to which communities converge on a collective memory 
of a shared event (Yamashiro & Hirst, 2014). In addition, it is important to note that 
social interactions not only shape individual memories but also the features of the social 
network, which, in turn, affect the formation of collective memories within a 
community. (Hirst et al., 2018; Rajaram & Pereira-Pasarin, 2010; Vlasceanu et al., 
2018). For instance, networks characterized by closely interconnected clusters of 
individuals exhibit a higher likelihood of forming convergent collective memories, 
whereas networks consisting of sparsely connected clusters tend to show less memory 
convergence across the members within the community (Coman et al., 2016). 
 

On the other hand, the conceptualization of memories as entities that are built in 
a network-like structure through which the activation of one node propagates throughout 
associated nodes offered important insights into the organization and structure of our 
mental representations and help clarify essential psychological processes that elucidate 
how novel experiences interplay with our stored memories (Anderson, 1983). For 
example, in classic semantic priming paradigms (Neely, 1977, 1991), the speed of 
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deciding that a letter string (doctor) is a word increases if it has been preceded by an 
associatively related word (nurse) relative to an unrelated word (house). The basic 
explanation is that the activation of nurse spreads through an associative-semantic 
network, thereby partially activating the related word doctor so that it can be recognized 
faster. Nevertheless, if the spreading of activation framework has potential value in 
memory, then one should be able to find that activation does not simply influence a 
directly related item but also extends beyond directly related ones to more distant items 
in memory network. A well-known example that aligns with the notion that the 
activation of a node spreads across multiple memory network links is provided by the 
literature on false memories. A common approach to elicit robust false memories at the 
lab was developed by Roediger & McDermott (1995), based on earlier search by (Deese, 
1959), and known as the Deese-Roediger-McDermot (DRM) paradigm. In this design, 
participants encode a list of words (e.g., bed, tired, rest, nap, dream, wake, snooze, 
blanket, yawn, drowsy) semantically associated to a non-presented critical word (e.g., 
sleep). Although sleep has not been presented, the intriguing finding from many 
experiments is that the critical word is falsely recalled and falsely recognized at very 
high levels in a subsequent memory test. The spread of activation framework helps 
explain this phenomenon by proposing that due to the strong associations between the 
encoded words, the activation of bed propagates to activate the concept of sleep, even 
though sleep had never been explicitly presented (Meade et al., 2007; Roediger, Watson, 
et al., 2001; Roediger III et al., 2001). Compelling evidence supporting the spread of 
activation account of the DRM phenomenon is that false recall increases steadily with 
increasing number of encoded word associates (Robinson & Roediger III, 1997). Hence, 
encoding more words boosts the context for activating related concepts, increasing the 
chances of cross-activation and indicating that activation of a non-presented but related 
lure item spreads accumulatively across the associated nodes in the memory network 
for that critical word. Conversely, the encoding of a reduced number of words promotes 
the strengthening of memory representation of the studied items reducing the 
propagation to other coactivated words and reducing the emergence of false memories.   

 
The interplay between network modularity or clustering, the process of 

diffusion, and the formation of true and false memories unveils an intriguing connection 
with the emergence of collective memories. Network modularity in social communities, 
characterized by the organization of interconnected nodes into distinct clusters, 
influences on the propagation of information and the subsequent construction of 
memories. Communication within clustered community networks promotes localized 
spread of information, which aids the reinforcement of similar memories among their 
individuals fostering mnemonic convergence. Conversely, communication in less 
modular collective networks, where propagation is not constrained by rigid module 
boundaries between members of the community, information can permeate more 
sparsely across the entire community network, thereby promoting the coactivation of a 
broader range of encoded memories at a collective level.  
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In this study, we aimed on discerning how the formation of both true and false 
memories might be influenced by the patterns of information exchange among 
individuals belonging to two distinct social network configurations: a clustered network 
and a nonclustered network. The central premise of our hypothesis is that the structure 
of social networks, whether characterized by clustering or lack thereof, plays a pivotal 
role in shaping the cognitive mechanisms underpinning memory processes (Greeley et 
al., 2023). We posited that the localized and controlled exchange of information within 
a clustered network fosters the preservation of accurate memories at individual level. 
This would be achieved through the reinforcement of related memories within clusters 
of community members. In contrast, we hypothesized that a nonclustered social 
network, characterized by more widespread information exchange, may promote the 
emergence of semantically related false memories. This stems from the propensity of 
diverse yet interconnected nodes to coactivate less convergent conceptually related 
memories, resembling the dynamics that promote false memories at cognitive level. 
Through this approach, we aimed to shed light on the relationship between network 
modularity, information diffusion, and memory dynamics, ultimately contributing to a 
deeper understanding of the mechanisms that govern memory formation at collective 
level. Understanding the connections between cognitive and social networks offers 
valuable insights into the intricate dynamics that influence both individual and collective 
memories, thereby deepening our understanding of memory processes across different 
scales. 

We asked 170 healthy individuals to participate in a memory experiment using 
the online recruitment systems of the University of Barcelona and the University of 
Granada. Following previous research (Coman et al., 2016), the experiment included 4 
phases, each of them conducted with network community groups of 10 participants each 
that completed them on separate computers (Figure 1) (see Materials and Methods). In 
the preconversational study phase (Phase I), each participant encoded 100 words 
presented in a computer. The stimuli included 10 wordlists from different semantic 
categories, each of them associated to a non-presented critical lure word (SI Appendix). 
Subsequently, during the preconversational recall phase (Phase II), each participant was 
asked to individually recall the studied words by typing them in a textbox in their 
computer. This was followed by the conversational recall phase (Phase III), wherein 
participants from the 10-member communities engaged in paired conversations with 3 
partners, collectively recalling the studied content. These interactions occurred in a chat-
like computer-mediated environment where participants typed their responses in a turn-
taking manner. Lastly, in the postconversational recall phase (Phase IV), participants 
individually freely recalled again the initially studied word lists.  

In the conversational recall phase, each participant completed 3 conversational 
free recalls with 3 different group members within the network community, pre-
arranged experimentally. They were tasked with collaboratively recollecting as many 
words as possible from the studied wordlists. Within the clustered condition (n = 80 
participants; eight 10-member networks), interactions followed a network structure with 
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two subclusters. Conversely, in the nonclustered condition (n = 90 participants; nine 10-
member networks), interactions occurred in a single large cluster. As in Coman et al., 
(2016) study, the global clustering coefficient, C (Freeman, 1978; Griffiths et al., 2013), 
contrasted between the clustered condition (C = 0.40) and the nonclustered condition (C 
= 0.00), thereby setting up an experimental design in which both network conditions 
were made comparable regarding factors such as the number of participants per network, 
the sequence of conversational interactions, and each participant's involvement in three 
conversations within their respective network. 

 
Figure 1. Experimental design. Phases of the experiment involve participants initially 
learning 10 lists of semantically related words (Phase I). In the preconversational (Phase II) 
and postconversational (Phase IV) phases, ten participants individually recollect the learned 
information. The conversational recall phase (Phase III) includes participants, indicated by 
white numbers, in either the clustered (top) or nonclustered (bottom) condition. Participants 
are depicted as circles, and interactions are represented by links. The order of the sequential 
conversations between paired participants are indicated by numbers in black. 

 
 

Results 
 

Social network structure modulates the recall of true and false memories  
We first examined whether participants’ recall for studied and nonstudied lure 

words changed after collaborative recall as a function of network type. To assess for this 
possibility, we calculated the recall rate for studied and critical lures before and after 
collaborative recall between participants of the clustered and the nonclustered network 
conditions. This analysis involved quantifying the recall rate for true and false items for 
each individual before (Phase II) and after (Phase IV) the conversational phase. A mixed 
factorial ANOVA, with recall type (true vs. false) and time (preconversation vs. 
postconversation) as within-subjects factors, and network condition (clustered vs. 
nonclustered) as a between-subject factor, revealed a significant main effect of recall 
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type (F(1,168) = 23.08, p < 0.01, h2 = 0.12) and a main effect of time (F(1,168) = 149.73, 
p < 0.01, h2 = 0.47) but not a significant interaction recall type x time (F(1,168) = 0.14, 
p < 0.91, h2 < 0.01). The results indicated that participants recalled, in overall, a greater 
number of true than lure words during the experiment but that their recall rate increased 
for both true and lure words in Phase IV when compared to Phase II (SI Appendix). 
However, we found a non-significant recall type x group (F(1,168) = 0.31, p = 0.58, h2 
= 0.002) nor time x group (F(1,168) = 0.53, p = 0.47, h2 = 0.003) or a recall type x time 
(F(1,168) < 0.01, p = 0.91, h2 < 0.001) interaction but a significant three-way interaction 
recall type x time x network condition effect (F(1,168) = 3.93, p = 0.049, h2 = 0.02), 
indicating that the degree of pre-post conversational recall rate differed for true and false 
memories as a function of network condition (Figure 2).  
 

 
Figure 2. Memory performance in pre and postconversational recall phases. Differences 
in recall rate of (A) true and (B) lure words (false memories) in Phase IV compared to Phase 
II. The mean difference between the clustered and the nonclustered group is shown in this 
Gardner-Altman estimation plot (Ho et al., 2019). Both groups are plotted on the left axes; 
the mean difference is plotted on a floating axis on the right as a bootstrap sampling 
distribution. The mean difference is depicted as a dot; the 95% confidence interval is indicated 
by the ends of the vertical error bar. 

 
Separate repeated measures ANOVA for true and false memories showed a 

significant effect of time (True memories: F(1,168) = 281.44, p < 0.01, h2 = 0.63; False 
memories: F(1,168) = 55.83, p < 0.01, h2 = 0.25) but did not show a significant time x 
group interaction effect either for true (F(1,168) = 1.34, p = 0.25, h2 = 0.01) or false 
memories (F(1,168) = 1.93, p = 0.16, h2 = 0.01). However, upon closer examination of 
the participants’ recall differences between phase II and IV we detected outliers within 
the dataset (defined by those data points that exceeded above the 3rd or below the 1st 
shape memory brain plus 1.5 times the interquartile range of the data; Figure 2). 
Consequently, we implemented a robust linear regression model to assess for 
differences between recall phases as this analysis is less sensitive to outliers than 
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ANOVA (Maechler et al., 2023). We found that true word recall increased to a greater 
extent in the postconversational phase compared to preconversational recall for 
members in the clustered condition (β = 0.021, SE = 0.011, t(168) = 1.929, p = 0.053), 
whereas the extent of false memories during postconversational recall increased more 
in the nonclustered condition than in the clustered condition (β = 0.045, SE = 0.023, 
t(168) = 1.918, p = 0.056). These results underscore the influence of network type on 
the recall rates of both true and false memories, with clustered networks enhancing true 
memory recall in the postconversational phase and nonclustered networks promoting a 
greater increase in false memories.  
 

To investigate whether these findings where specific to the studied words and 
the associated lures, we also analyzed memory intrusions of nonrelated words during 
the two recall phases (clustered group in phase II: M = 7.42%, STD = 8.19% and in 
phase IV: M = 7.70%, STD = 7.35%;  nonclustered group in Phase II: M = 7.87%, STD 
= 10.62% and in Phase IV: M = 9.17%; STD = 12.39%). A repeated measures ANOVA 
including phase (II vs IV) as within-subjects factor and network condition (clustered vs. 
nonclustered) as a between-subjects factor, confirmed that memory intrusions for 
nonrelated words did not change in either network group before and after the 
conversational phase (main effect of phase: F(1,168) = 1.27, p = 0.26, h2 = 0.08; phase 
x network condition interaction effect: F(1,168) = 0.53, p = 0.47, h2 = 0.03). Altogether, 
these effects were in the hypothesized direction, but only marginally significant; thus, 
we conducted additional analyses to explore the effect of network structure more 
precisely on true and false memories. 
 

Dynamics of memory performance during shared recall  
We next examined whether the repeated conversations modulated the memory 

accuracy observed at individual level when comparing pre and postconversation in our 
previous analysis. To investigate this issue in our data, we first measured the proportion 
of correctly recalled words and the proportion of lure words recalled in each 
participant’s conversation iteration (1st, 2nd and 3rd) (SI Appendix). We implemented a 
mixed factorial ANOVA that included conversation iteration (1st, 2nd and 3rd) and type 
of memory (true and false) as within-subjects factors, and network condition (clustered 
and nonclustered) as a between-subjects factor to assess for statistical effects. This 
analysis confirmed that, in overall, participants tended to recall more true than false 
memories (main effect of type: F(1,168) = 44.16, p < 0.001, h2 = 0.21) and that the two 
types of memories changed throughout conversation iteration (main effect of iteration: 
F(2,336) = 6.99, p = 0.001, h2 = 0.04). However, we found that the degree of memory 
change throughout conversation iteration varied for true and false memories as a 
function of network condition, as indicated by a significant three-way interaction type 
x iteration x network condition (F(2,336) = 3.26, p = 0.04, h2 = 0.02).  A separate 
ANOVA for true memories indicated that memory accuracy increase throughout the 
conversational phase iterations (main effect of iteration: F(2,336) = 9.25, p < 0.001, h2 = 
0.05) but the increase was similar between members of the two network conditions 
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(network condition x iteration: F(2,336) = 1.94, p = 0.15, h2 = 0.01) (Figure 3A). A 
polynomic contrast confirmed that the memory accuracy increase was linear (F(1,168) 
= 14.54, p < 0.001, h2 = 0.08). Conversely, the same analysis on false memories 
indicated more pronounced increase in nonclustered than in clustered condition (main 
effect of iteration: F(2,336) = 3.32, p = 0.04, h2 = 0.02; network condition x iteration: 
F(2,336) = 2.83, p = 0.06, h2 = 0.02) (Figure 3B). A polynomic contrast confirmed that 
the interaction of the effects was linear (F(1,168) = 5.71, p = 0.02, h2 = 0.03). Post-hoc 
contrasts revealed that the rate of false memories was greater in the 2nd (t(89) = 2.99, p 
= 0.004; Cohen’s d = 0.31) and 3rd (t(89) = 2.98, p = 0.004; Cohen’s d = 0.34) recall 
iteration compared with the 1st recall iteration in the nonclustered condition, whereas 
false memories did not differed significantly between recall iterations in the clustered 
condition (all t(79) < 1.5, p > 0.1). Similar trends were found when differences between 
1st and 3rd recall performance were analyzed by means of a robust linear regression 
model (true memories: β = 0.013, SE = 0.019, t(168) = 0.65, p = 0.51; false memories: 
β = 0.055, SE = 0.029, t(168) = 1.91, p = 0.05). These results provide support for the 
hypothesis that the conversational network structure influences the emergence of false 
memories.  

 

 
Figure 3. Memory changes during the conversational phase III. Differences in recall rate 
of (A) true and (B) lure words (false memories) between the 1st and the 3rd conversational 
recall in Phase III. The mean difference between the clustered and the nonclustered group is 
shown in this Gardner-Altman estimation plot (Ho et al., 2019). Both groups are plotted on 
the left axes; the mean difference is plotted on a floating axis on the right as a bootstrap 
sampling distribution. The mean difference is depicted as a dot; the 95% confidence interval 
is indicated by the ends of the vertical error bar. 

 
Memory consistency and network mnemonic convergence  
Altogether, our findings indicate that network structure had opposed mnemonic 

effects on the memory representations of network members and that these effects 
emerged through an iterative process of shared recall. More specifically, we 
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hypothesized that the localized and controlled exchange of information within a 
clustered network fosters the preservation of accurate memories at individual level. This 
would be achieved through the reinforcement of related memories in repeated recall 
conversations within the members of the community. Conversely, in the nonclustered 
network conditions, items included in the recall conversational iterations would diverge 
in a greater proportion, thereby coactivating less convergent related memories among 
the members of the community and promoting the emergence of false memories. To 
assess for this possibility, we calculated the degree of memory consistency between 1st 
and 2nd iterations and between the 2nd and the 3rd iterations for each participant and 
normalized each of these measures by the total number of correct items recalled in the 
first recall stage (Figure 4A). Confirming our hypothesis, the results of a repeated 
measures ANOVA including iteration (1st/2nd and 2nd/3rd) as a within-subjects factor and 
network condition as a between-subjects factor, revealed a significant iteration x 
network condition effect (F(1,168) = 5.98, p = 0.01, h2 = 0.034) (Figure 4B). A post-
hoc analysis comparing memory consistency scores between the 1st/2nd and 2nd/3rd 
iterations in the two network groups confirmed that memory preservation increased to 
a greater extent in the 2nd/3rd iteration in the clustered network group compared to the 
nonclustered group (t(168) = 2.45, p = 0.02, Cohen’s d = 0.36). The current results 
indicate that the communication within members in social networks, whether 
characterized by clustering or lack thereof, plays a pivotal role in shaping the cognitive 
mechanisms underpinning memory processes.  

In addition, these findings were specific to the studied words and the associated 
critical lures as both groups showed similar pattern of memory intrusions of nonrelated 
words during the conversational phase (clustered group: M = 26.04%, STD = 20.05%, 
M = 28.49%, STD = 20.23% and M = 25.41%, STD = 17.85%, for 1st, 2nd and 3rd 
iteration respectively; nonclustered group: M = 28.18%, STD = 20.25%, M = 26.72%, 
STD = 17.37% and M = 25.14%, STD = 18.89%). This was confirmed via a repeated 
measures ANOVA including iteration and network condition as within and between-
subjects factors, respectively (main effect of iteration: F(2,336) = 1.09, p = 0.39, h2 = 
0.005; Interaction iteration x network condition effect: F(2,336) = 0.70, p = 0.49, h2 = 
0.004). 
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Figure 4. (A) A graphic summary of the hypothesis of the study. We suggested that in 
clustered networks, where information exchange is localized, accurate memories are better 
preserved due to reinforced related memories within communities (Left). In contrast, 
nonclustered networks with widespread information exchange may lead to related false 
memories. This is because interconnected nodes can coactivate less convergent conceptually 
related memories, similar to the cognitive dynamics promoting false memories (Right). (B) 
Changes in the degree of memory consistency of true memories (words) between 1st/2nd and 
2nd/3rd conversational recall iteration (Phase III) for each member of the two network 
conditions. (C) Difference of mnemonic convergence scores for the clustered and 
nonclustered conditions in Phase IV compared to Phase II. The mean difference between the 
clustered and the nonclustered group is shown in this Gardner-Altman estimation plot in (B) 
and (C) (Ho et al., 2019). Both groups are plotted on the left axes; the mean difference is 
plotted on a floating axis on the right as a bootstrap sampling distribution. The mean 
difference is depicted as a dot; the 95% confidence interval is indicated by the ends of the 
vertical error bar. 

 
The fact that clustered network conditions preserved memory for true memories 

may indicate that individuals within the clustered condition tended to converge in 
greater extend at network level after the conversational phase. To account for this 
possibility, we calculated a mnemonic similarity score for true and false memories for 
each pair of participants in the network by adding the number of items remembered in 
common by both participants, and then dividing this sum by the total number of items 
recalled. Then, following Coman et al. (2016), a network mnemonic convergence score 
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was calculated by averaging the mnemonic similarity scores among all the pairs of 
participants in the network, separately for the pre and postconversational recalls. We 
found that, in overall, network mnemonic convergence was higher for true than for false 
memories (main effect of type: F(1,15) = 484.54, p < 0.001, h2 = 0.97). We also found 
that the degree of mnemonic convergence increased after conversational recalls (main 
effect of recall phase: F(1,15) = 331.34, p < 0.001, h2 = 0.96) and that this change 
differed between true than false memories (type x pre effect: F(1,15) = 213.34, p < 0.01, 
h2 = 0.93). However, we also found a significant type x recall phase x network condition 
interaction effect (F(1,15) = 4.71, p = 0.046, h2 = 0.24), indicating that the change 
between pre and postconversational mnemonic convergence for true and false memories 
differed between network conditions. 
 

A separate repeated measures ANOVA for network mnemonic convergence for 
true and false memories allowed identifying the source of the three-way interaction. 
More specifically, the ANOVA including recall phase (i.e., pre and postconversation) 
and network condition suggested that mnemonic convergence for true items increased 
more in the clustered than in the nonclustered network condition (main pre-post effect: 
F(1,15) = 331.23, p < 0.01, h2 = 0.96; network condition x pre-post interaction effect: 
F(1,15) = 4.12, p = 0.06, h2 = 0.22). Similar results were found when differences in 
mnemonic convergence between pre and postconversational recall were analyzed with 
a robust regression model that controlled for outliers in the data (true memories: β = 
0.02, SE = 0.01, t(168) = 2.35, p = 0.03)  (Figure 4C). Conversely, similar increase was 
found in the clustered and in the nonclustered groups regarding the mnemonic 
convergence for lure items (main pre-post effect: F(1,15) = 10.42, p < 0.01, h2 = 0.41; 
network condition x pre-post interaction effect: F(1,15) = 0.82, p = 0.38, h2 = 0.05). 
Taken together, our findings suggest that a factor influencing the emergence of false 
memories may be the alteration in the spread and strength of information within social 
networks. 

 

Discussion 

Our study sheds light on the significant influence of network clustering in 
shaping true and false memories at a collective level. Our findings illustrate that 
clustered networks have a beneficial influence on memory retention, reducing the 
scattering of information intended for memorization. This effect is instrumental in 
enhancing the accuracy and fidelity of stored memories, as the clustered topology 
facilitates the containment of closely related nodes that reinforce each other's nodes, 
leading to a more consistent memory representation. In contrast, the dynamics within 
nonclustered networks exhibited the increased cross-activation of loosely related nodes, 
blurring the boundaries between items and contributing to the formation of false 
memories.  
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Our findings align with previous studies that showed that conversational 
remembering is selective (Marsh, 2007; Rajaram & Pereira-Pasarin, 2010), susceptible 
to errors (Schacter, 2022), capable of altering the memories of the interlocutors (Hirst 
& Echterhoff, 2012) and shaped by the degree of clustering network of the community 
structure (Coman et al., 2016). They also align with the notion that these effects can be 
explained by cognitive processes that take place during collaborative recall, such as 
memory reinforcement (Roediger et al., 2009) and social contagion (Maswood & 
Rajaram, 2019; Meade & Roediger, 2009; Roediger, Meade, et al., 2001). What 
distinguishes the current study from prior research is that it explored the potential that a 
general information transmission principle, based on the modularity of a network 
structure, could elucidate the nature of how memories are represented at the cognitive 
level. Specifically, collective memories are believed to arise from the exchange of 
information among engaged members of a community, with influence indirectly 
transmitted through connected peers (Yamashiro & Hirst, 2014). Cognitive models 
explaining memory representation suggest that a comparable process underlies the 
interconnection of memories sharing common content, facilitating the development of 
abstract and semantic-based representations (McClelland et al., 2020). The current 
findings demonstrate, for the first time, that a shared network information transmission 
principle can have an impact at both social and at the individual level.  

Our results highlight the dynamic nature of memory, where information is 
actively reconstructed and reorganized by the brain. This is consistent with the notion 
that memories are stored and retrieved through interconnected neural networks in the 
brain and false memories would occur when these networks overlap during recall, 
distorting recollections (Kurkela & Dennis, 2016; Wing et al., 2020; Ye et al., 2016). 
However, while neuroimaging-supported empirical studies (e.g., Chadwick et al., 2016) 
provide valuable evidence supporting the role of mnemonic neural network activation 
in the brain, there are persisting limitations in our ability to mechanistically examine 
and precisely capture the correspondence of memory representations at the neuronal 
level. Our research contributes to this field by leveraging the analogy that these 
interconnected memory networks can be likened to a social network, where each node 
represents a community member engaged in dynamic interactions. This analogy 
provides a novel perspective, demonstrating empirically that memories are indeed 
significantly influenced by the cross-coactivation of associated nodes. In doing so, our 
study advances our understanding of the complex interplay between cognition and social 
networks, opening new avenues for research in this multidisciplinary field. 

It is important to acknowledge that even though our study isolated the effects on 
true and false memories associated to network structure, these effects assumed that all 
individual members of the community and their impact at the network-wide level are of 
equal significance. However, not all individual members possess equal potential to 
influence the network's collective memory. For instance, individuals who connect 
between clusters have a significant influence in the network (Derex & Boyd, 2016), 
especially if they shared recall takes place at early stages of other dyadic-level 
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conversations within the network community (Momennejad et al., 2019). Interpersonal 
factors, such as source credibility (partners vs. strangers) (French et al., 2008), 
perception of power (influential vs. weak) (Skagerberg & Wright, 2009) and confidence 
(competitive vs. cooperative) (Wright et al., 2008) (see for a review, Maswood and 
Rajaram, 2019) influences social contagion and likely the emergence of false memories. 
Thus, systematic manipulations involving different temporal arrangements of shared 
conversations within members within the network topology and the inclusion of 
relationship characteristics of the members of the community will likely reveal 
meaningful network dynamics involving the formation of true and false collective 
memories.   

 
The impact of information transmission within social communities is an 

important topic of research as it reaches a large-scale societal impact, from attitudes and 
beliefs (Hirst & Echterhoff, 2012) and to political polarization (Bakshy et al., 2015), 
and collective behavior (Bahrami et al., 2012). The strategic dissemination of 
information within societal communities has also been a subject of crucial debate, with 
ramifications for political (Frenda et al., 2013) and health-related attitudes (Centola, 
2010). One concerning aspect is the potential for these strategies to inadvertently foster 
false beliefs, which is a pervasive issue in society. Mitigating the emergence of false 
beliefs in the society is challenging, because attitude-congruent false events promote 
feelings of recognition and familiarity, which in turn interfere with source attributions 
(Johnson et al., 1993). Our research suggests that one possible effective strategy to 
address this problem may involve structuring dissemination efforts based on the social 
communication network's design by controlling the spread of information within distinct 
communities rather than disseminating it haphazardly through social networks or large-
scale media channels. 

While it is tempting to conclude that false memories point to fundamental flaws 
in the nature or composition of memory, there is a growing number of researchers who 
argue that, to the contrary, false memories reflect the operation of adaptive processes as 
they reflect gist-based processing supporting the retention of themes and meanings that 
facilitate generalization and abstraction (Gallo, 2010; Roediger & McDermott, 1995; 
Schacter et al., 2011). Individual differences in the generation false memories are also 
associated to divergent – the processes of generating multiple alternative ideas or 
solutions (Thakral et al., 2021) - and convergent thinking - selecting the creative ones 
(Dewhurst et al., 2011), two core components associated to creative thought (Ward et 
al., 1997). Creativity plays a major role in human development as it is thought to 
fundamentally distinguish human beings from other branches of the tree of life (Runco 
& Albert, 2010), becoming and important focus of school curricula across the world 
(Patston et al., 2021). Unfortunately, training on creativity performance in formal 
educational settings is still a challenging endeavor (DeHaan, 2011) and could benefit 
from the approach proposed herein by, for example, promoting nonclustered exchange 
of information among individuals in classrooms.  
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The duality between clustered and nonclustered network effects observed in the 
current study prompts an intriguing exploration into the trade-offs between memory 
accuracy and the potential for creative reinterpretations at the collective level (e.g., 
Rajaram, 2011). The clustered architecture may seem particularly suited for contexts 
where the preservation of detailed information is paramount, such as historical or 
personal events. On the other hand, the nonclustered arrangement's propensity for 
semantic spreading highlights its potential role in promoting conceptual blending and 
fostering innovative interpretations. In a broader context, our findings underscore the 
intricate interplay between network topology, memory dynamics, and the construction 
of collective memories. This not only enriches our understanding of the cognitive 
processes underlying memory but also provides a lens through which we can examine 
the intricate relationships between social network structure, memory representation, and 
the evolution of collective knowledge. 
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Materials and Methods 
 

Participants 
Following previous studies using similar experimental design, we aimed at 

recruiting 10 groups of 10 participants each for each experimental condition. The 
statistical power afforded by this sample size was deemed adequate given effect sizes 
obtained in previous studies using a similar sample size and experimental paradigm 
(Coman et al., 2016; Vlasceanu et al., 2020). However, due to technical problems with 
the need to run the experiment synchronically within groups of 10 people, the final 
sample included in the study consisted of 170 healthy participants (78.2% females) with 
a mean age of 24.7 (SD = 7.3). All participants were native or highly proficient Spanish 
speakers. The study was advertised on a platform for students affiliated with the 
University of Barcelona or the University of Granada. Additionally, flyers of the study 
were posted around the university campuses and shared on social media. The 
participants were self-selected and received either 2 course credits or 5 euros as 
compensation. For each group of 10 participants, an additional prize draw of 20 euros 
was conducted. Informed consent was obtained upon familiarization with the 
experimental procedure before the experiment onset. The study was approved by the 
University of Barcelona Ethics Committee. 
 

Materials  
The DRM paradigm was used to collect data in the present study. Ten DRM 

word lists used in the paradigm were adopted from Alonso et al. (2004) and attached in 
SI Appendix. Each of the lists contained 10 words semantically related to a critical non-
presented word – a lure. For example, (translated from Spanish) wind, breathe, fresh 
etc. were the presented words associated with the critical non-presented word air. The 
distractor task consisted of 36 arithmetical problems (e.g., (12 / 4) + 4 = 7) with a ‘yes’ 
or ‘no’ answer, each presented for 5 seconds. The experimental task was programmed 
using the Qualtrics platform (Qualtrics.com), specifically its branch SMARTRIQS 
(smartriqs.com) which allows for programming interactive online experiments.  

 
Design and Procedure 
The task was completed in synchrony in groups of 10 individuals via a computer. 

The participants completed it either on-site in the university computer room or remotely. 
Participants who were physically present at the task were seated at individual computers 
within a spacious room. They were not provided with information regarding which 
among the potential others were also engaged in the same task. Participants received 
full instructions in person or via Google Meets, then they provided the consent form and 
then they started the task.  

Following Coman et al. (2016) study, we defined two network structures - 
clustered and nonclustered, each of them including 10 participants. In the nonclustered 
condition, the participants were equally connected to all the individuals in the network. 
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In the clustered condition, the network was split into two subclusters of 5 individuals 
which were connected by only one individual from each cluster. In the nonclustered 
condition, individuals were connected in unconstrained manner to other individuals of 
the network. Individuals performed the task in their own computers and interacted with 
each associated member in the conversational phase via the chat box that appeared 
during the conversational phase in each of their computers. Participants knew that 10 
other individuals were concurrently engaged in the task, but they had no direct 
interaction with anyone except during the conversational phase when using their own 
computers. 

The task started with an encoding phase, followed by a distractor task. In the 
encoding phase, the participants were asked to memorize words presented on the screen 
for 2 seconds each. The order of the DRM word lists was random for each participant 
but the order of words within each DRM list was kept constant. In the distractor task, 
the participants were asked to indicate whether the arithmetical problem solution was 
correct or incorrect by clicking the corresponding button. After completing the distractor 
task, the experiment continued with 3 distinct recall phases: a preconversational 
individual recall, followed by a conversational recall and a postconversational 
individual recall. The participants automatically entered the preconversational 
individual recall phase after finishing the distractor task. They were asked to type down 
all the words they remembered from the encoding phase for a maximum of 6 minutes. 
Subsequently, in the conversational phase, each participant was automatically paired 
and connected with another participant. Each participant completed 3 conversational 
recalls with 3 different group members. The pairs of participants entered a chat window 
shown in their individual computers where they were asked to recall words in 
collaboration by taking turns, as false recall was greater in turn-taking groups compared 
to both the free-for-all and nominal groups (Basden et al., 1997; Meade & Roediger, 
2009; Thorley & Dewhurst, 2007) and when individuals are allowed to free-flowing 
collaboration (Barber et al., 2010). Each pair member recalled one word at a time in 
their own computer and subsequently waited for the other pair member to recall and 
share their word. In case they could not remember a word, they had the option to skip 
the turn by writing ‘pass’ in the chat. In this phase, the groups of 10 were organized 
either into the clustered or nonclustered network. The total time of each conversation 
was 5 minutes. After the chat, the participants entered the postconversational recall 
phase which was identical to the first individual recall phase. The total duration of the 
experiment was approximately 45 minutes. 
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SI Appendix 
 
 
 

List 1 List 2 List 3 List 4 List 5 
noche humo aire silla corona 

día fuego viento sentarse rey 
luna cigarro respirar mesa reina 

oscuridad chimenea fresco respaldo espinas 
estrellas tabaco oxígeno asiento cabeza 

negra gris puro taburete oro 
dormir incendio vuelo sillón diamantes 

luz fumar libre mecedora real 
sueño señal tierra sofa princesa 
cielo olor gas madera poder 
fiesta leña avión comodidad laurel 

 
 

List 6 List 7 List 8 List 9 List 10 
hambre cárcel caja guerra corazón 

sed rejas guardar paz amor 
comida prisión dinero muerte latido 
pobreza preso fuerte lucha rojo 

pan barrotes sorpresa horror sangre 
necesidad cerrado cartón odio vida 
miseria ladrón secreto violencia partido 

frío hierro cajón destrucción roto 
alimento encierro regalo fusil órgano 
inanición celda herramientas mal león 
estómago retener cuadrada batalla alma 

 
Table 1. Lists of the words and the associated lure word included in the study. 
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 Phase II Phase IV 
   

 True False True False 
     

clustered 27.65 
(11.14) 

22.25 
(19.03) 

37.51 
(11.13) 

29.87 
(19.97) 

     

nonclustered 28.81 
(12.97) 

19.33 
(16.68) 

37.40 
(14.11) 

30.44 
(17.79) 

 
Table 2. Percentage of true and lure words recalled in Phase II and in Phase IV for each 
network group. Values indicate means and standard deviation in parenthesis.  
 
 
 
 
 

 True memories False memories 
   

 1st 2nd 3rd 1st 2nd 3rd 
       

clustered 27.41 
(12.31) 

28.56 
(12.00) 

31.40 
(12.43) 

21.50 
(18.36) 

23.25 
(19.08) 

20.00 
(16.99) 

       

nonclustered 25.72 
(10.06) 

29.86 
(9.50) 

29.44 
(10.24) 

18.33 
(13.92) 

23.89 
(15.84) 

23.56 
(16.51) 

 
Table 3. Percentage of true and lure words recalled in each conversational iteration in 
Phase III for each network group. Values indicate means and standard deviation in 
parenthesis.  
 
 
 


