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Abstract

Perceptual pleasure and its concomitant hedonic value play an essential role in every-

day life,motivatingbehavior and thus influencinghow individuals choose to spend their

time and resources. However, how pleasure arises from perception of sensory infor-

mation remains relatively poorly understood. In particular, research has neglected the

question of how perceptual representationsmediate the relationships between stimu-

lus properties and liking (e.g., stimulus symmetry can only affect liking if it is perceived).

The present research addresses this gap for the first time, analyzing perceptual and

liking ratings of 96 nonmusicians (power of 0.99) and finding that perceptual represen-

tationsmediate effects of feature-based and information-based stimulus properties on

liking for a novel set of melodies varying in balance, contour, symmetry, or complex-

ity. Moreover, variability due to individual differences and stimuli accounts for most of

the variance in liking. These results have broad implications for psychological research

on sensory valuation, advocating a more explicit account of random variability and the

mediating role of perceptual representations of stimulus properties.
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INTRODUCTION

Perception and appreciation of sensory stimuli are fundamental

aspects of cognition, crucial for survival.1 Cognitive systems of humans

and other organisms make sense of the world by establishing cat-

egories, regularities, and relationships to organize their cognitive

representations of objects, situations, and events encountered or

predicted.2 They motivate their behavior by assigning hedonic value
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(propitious or pernicious, desirable or distasteful, liked or disliked) to

such representations considering the system’s current state, aims, and

expectations.3,4 Value assignment is a fundamental neurobiological

process as it allows comparing, choosing, and prioritizing actions.5,6 It

is variously referred to as sensory valuation, hedonic evaluation, evalu-

ative judgment, or appreciation, of which liking and disliking constitute

a prominent instance and signal the pleasure of perceiving sensory

information.7
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Psychological research has typically focused on direct relations

between liking andeither stimulusproperties (e.g., Refs. 8 and9) orper-

ceptual representations assessed via subjective ratings (e.g., Refs. 10

and 11), tacitly assuming a transparent process of perception such that

perceptual representations are equivalent to the corresponding stimu-

lus properties. The relationship between perceived affect and hedonic

value is well established,12 with emotion and meaning mediating the

impact of stimulus properties on pleasure.13 However, a mediating

role of perceptual representations of stimulus properties such as bal-

ance, contour, symmetry, or complexity has yet to bedirectly examined,

despite their demonstrated influence on liking in various domains.14–16

Likewise, neuroscientific research showing that signals computed in

the reward system assess the hedonic value of stimulus information

relayed from sensory cortices7 have focused on activity in the reward

system17 or connectivity between perceptual and reward systems.18

Therefore, they do not shed light on a mediating psychological role of

perceptual representations in the pleasure and value judgment evoked

by sensory objects. In summary, a thorough account of the relation-

ships between stimulus properties, their perceptual representation,

and their appreciation has yet to be established.

Liking for music

Humans assign elementary hedonic value to biologically relevant

objects like food or faces and to abstract and cultural objects like

money and music,19 which concurs with the common currency hypoth-

esis for a single neural basis for pleasure arising from different sensory

and cognitive states.20 In this context, music provides a rich domain:

First, it is considered a pervasive cultural artifact21 whose perception

and appreciation rest upon general cognitive mechanisms,22 as creat-

ing,making, and appreciatingmusic involves practically every cognitive

function.23 Second, musical systems allow stimulus properties to be

combined into a virtually unlimited range of compositions across styles

and cultures.24 Third, it fulfills a broad range of individual and social

functions,25 suchas emotion regulation26 and social bonding.27 Fourth,

humans invest high personal value in music28 with respect to time,

effort, and economic resources.29

Predictive processing is a fundamental cognitive mechanism driv-

ingmusic perception and appreciation.30,31 Listenersmake predictions

based on veridical and schematic expectations,32 learning statisti-

cal properties implicitly through repeated exposure33 or explicitly

through training.34 Whereas schematic expectations rest upon knowl-

edge inferred about syntactic or stylistic regularities characterizing

a large body of previously encountered stimuli,35 veridical expecta-

tions rest upon precise memory for specific previously encountered

stimuli.32

Music activates the reward systemby evoking sufficiently uncertain

schematic expectations to build anticipation and presenting suffi-

ciently surprising events to foster learning and reward.9,36 It has

been hypothesized that learning makes stimuli perceptually less com-

plex (i.e., less surprising) and, hence, more pleasurable.37 This poses

two critical questions: To what extent is perceived complexity related

to perceived unpredictability? Do perceived complexity and unpre-

dictability mediate the relationship between stimulus complexity and

liking?

Stimulus complexity can be operationalized in terms of feature-

based (e.g., event density) and information-based stimulus properties,

such as information content (IC), a well-established characterization

of stimulus unpredictability, reflecting the negative log probability of

a stimulus event.31 Complexity perception and appreciation have been

explained as a function of feature-based models like MUST38—which

captures the imbalance, jaggedness, asymmetry, and complexity of

melodies—and information-based models like IDyOM31—which relies

on statistical learning and probabilistic prediction. Both feature-based

and information-based measures of stimulus complexity account for

shared and unique variability in perceived complexity and liking for

short Western tonal melodies38 comparable to those in the present

study.

Music-elicited pleasure is directly influenced by schematic

expectation9,36 but is also stronglymodulatedbyveridical familiarity,39

that is, veridical knowledge derived through previous experience with

particular pieces and amusical culture.40−42 Controlling for familiarity

is, therefore, crucial for understanding the role of perceptual repre-

sentations in the relationship between stimulus properties and liking

formusic. This has proven to be a helpful strategy in previous research,

such as in Lahdelma and Eerola’s study.43

Formal properties such asbalance, contour, symmetry, and complex-

ity have been consistently shown to affect liking for melodies8,16,44

and visual designs.45−47 Their consistent effects at a group level8,12,16

make them particularly suitable to the purposes of this study, that

is, to inspect the role of their perceptual representations on these

relationships. Beyond consistent general trends—for example, prefer-

ence for balanced, jagged, asymmetric, and complex melodies8,12,16—

systematic assessments show that between 50% and 92% of the

variance in judgments of liking stems from differences between and

within individual.48−51 Thus, the question remains whether individ-

uals prefer, for example, stimuli they perceive as being smoother

regardless of how smooth the stimulus actually is or whether hedo-

nic insensitivity to symmetry stems from an inability to recognize

symmetry.

The present study

This study aims to further the understanding of psychological mech-

anisms underlying the appreciation of sensory stimuli. Specifically, it

investigates the structure of relations between stimulus properties,

their perceptual representations, and liking, testing the hypothesis

that perceptual representations mediate the impact of stimulus prop-

erties upon liking for melodies. We consider feature-based (balance,

contour, symmetry, and complexity) and information-based proper-

ties (IC) known to affect perceptual and hedonic evaluations of

music8,31 and visual images.16,50 The choice of properties enables the

approach to be extended with comparable visual stimuli in future

research.
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Clemente and colleagues38 characterized balance (balanced/

imbalanced) as involving an equilibrated/skewed temporal

distribution of events, contour (smooth/jagged) as containing

small/large interval size and few/many direction changes, symme-

try (symmetric/asymmetric) as possessing a mirrored/nonmirrored

structure about a vertical axis, and complexity (simple/complex) as

made of small/large number and variety of events. We hypothe-

sized that these properties would affect perceived unpredictability

because they reflect lower-level stimulus-specific sensory information,

whereas unpredictability reflects a higher-level general mechanism of

predictive processing.52,53 Moreover, IC was modeled by combining

pitch- and onset-related viewpoints and accounted for event density,

thereby encompassing defining aspects of the feature-based proper-

ties (seeMethod). In particular, ICwould increase formore imbalanced

(irregularly distributed and, thus, rhythmically unpredictable notes),

jagged (larger intervals in changing directions), asymmetric (less

redundant), and complex melodies (more and more varied notes).

Consequently, we hypothesized a structure of relations according to

which: (1) the feature-based property varied in each subset (balance,

contour, symmetry, or complexity) would influence perceptual rep-

resentations of those feature-based properties; (2) these perceptual

representations and IC would affect perceived unpredictability; and

(3) perceptual representations of information- and feature-based

properties would impact liking.

MATERIALS AND METHODS

Participants

Ninety-six participants (age:M = 35.18, SD = 11.95; range = [18, 59];

46women, 48men) from the general population took part in the exper-

iment. They were nonmusicians acculturated in the Western musical

tradition to enable the generalizability of results within a particular

culture. The sample size was based on comparable research in empir-

ical aesthetics, in which 48 participants assessed short melodies in

a lab-based experiment.8,16 Following general recommendations for

online studies,54 we doubled the sample size in those studies. Accord-

ing to Judd et al.’s power calculator (https://jakewestfall.shinyapps.io/

two_factor_power/),55 the power was 0.99 for a hypothesized moder-

ate effect size of 0.5, given the lack of previous experimental data using

similar settings and analytical techniques.

All participants reported having normal or corrected-to-normal

vision and hearing and no cognitive impairments. They were native

English speakers, unaware of the study’s purpose, recruited through

Prolific (https://www.prolific.co/) with a minimum approval rate of

80%, and compensated for participation following Prolific recommen-

dations. Informedconsentwasobtained fromall individual participants

prior to participation. Data were collected between March and July

2022. An age check revealed two participants with missing data, who

were consequently excluded from the analyses. Ethical approval was

granted by the Queen Mary University of London Ethical Committee

(QMERC20.410).

Materials

We curated a novel set of 96 musical excerpts for research on music

perception and cognition. The Naturalistic MUsical STimulus (Nat-

MUST) set consists of four subsets of 24 melodic excerpts from the

Western classical repertoire spanning the 14th−20th centuries. The

stimulus duration varies between 2 and 10 s; the maximum duration

fallswithin the short-termauditorymemory spanof nonmusicians,56,57

and perception of musical symmetry has also been demonstrated for

stimuli in this range of durations.58,59 Using stimuli from the existing

canon enhances the ecological validity of our approach as compared

with previous studies using stimuli created specifically for a particular

experiment8,12,16 and enhances the generalizability of results beyond a

particular stylewithin a culture.However, this alsoobliges us to restrict

the analysis to unfamiliar melodies to minimize the effects of veridical

knowledge resulting from specific episodic memories of the stimuli.

From each selected piece or movement, we curated two fragments

representative of each pole of a particular property of interest. This

minimized differences in style, mode, tempo, and other factors sus-

ceptible to confounding the results. The stimuli were transcribed and

synthesized using grand piano sampling with MuseScore. The stimuli

were rendered in XML, MIDI, CSV, and MP3 to facilitate their use by

other researchers. Further details of the stimuli can be found at https://

osf.io/k6gme/ and in the Supplementary Materials. Each subset varies

systematically in a single stimulus property (balance, contour, sym-

metry, or complexity) and comprises 12 stimuli aligned toward each

pole of a bimodal dimension: balanced−imbalanced, smooth−jagged,

symmetric−asymmetric, and simple−complex (Figure 1). Each of these

dimensions was quantified by a feature-based composite computa-

tional measure (capturing differences between andwithin poles) taken

from the MUST toolbox, v1.1 (Clemente and colleagues,38 revised for

the present research and available at https://osf.io/bfxz7/): BC for bal-

ance, CC for contour, SC for symmetry, and KC for complexity. We

also computed an information-theoretic measure of the unpredictabil-

ity of each stimulus: the log-scaled total IC summed for all events in

each stimulus, derived from a long-term IDyOM model (LTM) trained

on Western music corpora,31 which estimates the conditional proba-

bility of each event in each stimulus given the preceding sequence.We

used LTM log-scaled total IC to account for event density and the

Weber−Fechner law.a

We validated the stimuli in the NatMUST in two ways, which are

reported and discussed in full in the Supplementary Materials; the fol-

lowing is a brief summary. First, a behavioral assessment examined

the extent to which the experimental design—that is, the grouping of

stimuli by stimulus property (balance, contour, symmetry, complexity)

and pole—matched perceptual ratings of balance, contour, symmetry,

and complexity given by musically untrained participants. Second, a

a In preliminary analyses, we examined IDyOM’s performance in predicting complexity, unpre-

dictability, and liking ratings using the short-termmodel (STM, online learning within each test

melody), long-term model (LTM, pretraining on a corpus), and BOTH configuration (STM plus

LTM), with cpitch and onset individually and combined. The model comparisons yielded no

significant differences but consistently showed lower AIC and BIC values than for the LTM

using cpitch and onset combined. Models with untransformed mean or total IC failed to

converge. IDyOM is available at https://www.marcus-pearce.com/idyom/.
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F IGURE 1 NatMUST sample scores in each subset. Melodic excerpts from Stravinsky’s Petrushka (1911) for balance, Mahler’s 5th Symphony
(1902) for contour,Webern’s Variation I from the Variations Op. 27 (1936) for symmetry, and Beethoven’s Variations VII and VIII from the 32
VariationsWoO80 (1806) for complexity. The full set is available at https://osf.io/k6gme/.

computational assessment examined the extent to which the exper-

imental design matched quantitative measures of balance, contour,

symmetry, and complexity from theMUST toolbox.38 The results show

that perceptual ratings consistently reflected the intended variation

within each subset, which was significantly associated with compu-

tational measures of feature-based balance, contour, symmetry, and

complexity. This demonstrates that the NatMUST stimuli have accept-

able construct validity in systematically manipulating nonmusicians’

perception of musical balance, contour, symmetry, and complexity.

Procedure

We created and hosted the experiment using the Gorilla Experi-

ment Builder (https://www.gorilla.sc).60 After providing informed con-

sent, prospective participants performed a browser soundcheck, a

built-in volume calibration, and a headphone screening.61 Individu-

als failing this test were automatically excluded from the final sample

referred to above, as they were not allowed to proceed with the

experiment.

All stimuli were presented in the MP3 format (128 kbps). The

paradigm comprised two blocks, thus presenting the stimuli twice: In

the first block, the participants rated their liking for and familiaritywith

each stimulus. In the second block, they rated its perceived balance,

contour, symmetry or complexity, and unpredictability. Each block con-

sisted of four sub-blocks, each corresponding to a NatMUST subset.

Sub-block and stimulus order were individually randomized for each

participant. We presented the liking block before the perceptual block

to prevent contamination of liking ratings by perceptual ratings.b

Participants were introduced to each perceptual sub-block through

four practice stimuli (two for each pole, using stimuli from Clemente

and colleagues38) and explicitly requested “Please, rate howmuch you

like each melody based on the subjective feelings of pleasure, inter-

est, enjoyment, and desirability evoked or elicited by it” for consistency

with previous studies.8,12,16,50 On each of the 24 trials within each sub-

block, participants listened to each stimulus before rating it on 5-point

Likert scales with specific labels later coded numerically for analytical

purposes:

1. Liking: I dislike it verymuch (−2), I dislike it (−1), I neither like nor dislike

it (0), I like it (1), I like it very much (2);

2. Perceptual representation: Very balanced/smooth/symmetric/simple

(−2), Rather balanced/smooth/symmetric/simple (−1), Undefined

b The rationale behind this design derives from the results of a pilot experiment suggesting

contamination between liking and perceptual ratings when provided together after listening

to each stimulus in a single block.
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(0), Rather imbalanced/jagged/asymmetric/complex (1), Very

imbalanced/jagged/asymmetric/complex (2);

3. Unpredictability: Very predictable (−2), Rather predictable (−1),Neu-

tral (0), Rather unpredictable (1), Very unpredictable (2);

4. Familiarity: Totally unknown (−2), Somehow familiar (0), Very well

known (2).

The rating scales served as response cues immediately after the

stimulus presentation.We opted for 5-point Likert scales because they

provide straightforward interpretability by participants, thus facilitat-

ing consistency between ratings. Ratings were self-paced. After single

responses on all scales on the screen had been provided, participants

could submit and proceed to the next stimulus, block, sub-block, or

questionnaire. Following the main blocks, participants completed the

Gold-MSI training scale62 and a short demographic questionnaire (age,

gender, education, musical education, and musicianship) to character-

ize the sample. Short breaks were allowed, but participants had to

complete the experiment in one session. The experimental session

lasted about 50min.

Data analysis

The NatMUST was designed to avoid generally well-known melodies,

but it was impossible to ensure a priori that all stimuli were unfamiliar

to all participants. Therefore, toprecludeanyeffects of veridical knowl-

edge (i.e., specific knowledge of a stimulus arising from prior listening),

participants reported familiarity with each stimulus, and the analysis

was restricted to unfamiliar stimuli, retaining 75% of all data points.c

To investigate the structure of relations between stimulus prop-

erties, perceptual representations, and liking, we applied structural

equation modeling (SEM) to ratings of the stimuli in each subset.

SEM estimates a network’s hierarchical associations between endoge-

nous (dependent, response) and exogenous (independent, predictor)

variables. Global estimation attempts to capture relationships between

the variables in the model through a variance-covariance matrix. This

approach assumes thatmultivariate normal data sufficiently replicated

to generate unbiased parameter estimates. In contrast, local estima-

tion or piecewise SEM probes the relationships for each endogenous

variable separately by fitting a linearmodel for each response, stringing

together the inferences and evaluating them. Piecewise SEM (or con-

firmatory path analysis)63 expands upon traditional SEM by introducing

a flexible mathematical framework that accommodates a variety of

model structures, distributions, and assumptions, including interac-

tions and non-Gaussian responses, random effects, and hierarchical

models as well as alternate correlation structures. It is, therefore, the

most appropriate approach to our data because none of the exoge-

nous variables was normally distributed (ps < 0.05) and we factored in

random effects.

c Preliminary analyseswith data from another experiment inwhich the stimuli were presented

only once showed no effects of familiarity when excluding stimuli reported to be familiar but

contamination between hedonic and perceptual ratings.

Sufficient power is critical for robust unbiased inferences, espe-

cially for SEM, as it evaluates multiple hypotheses simultaneously and

thus requires more data than other approaches. The system of equa-

tions must be overidentified to allow the extra information (degrees of

freedom) to provide additional insight—that is, to test the model fit.

Analogous to χ2 for global estimation, Fisher’s C assesses the global

goodness of fit; that is, whether the modeled relationships between

variables deviate substantially from the relationships in the data. If

not, the model is assumed to fit appropriately and can be used for

inference. The model-wide p-value reflects whether the data support

the hypothesized structure: If p > 0.05, the hypothesized structure is

supported, meaning no potentially significant paths are missing. Con-

versely, a substantial deviation from the observed correlations (p <

0.05) suggestsmissing information that couldmake the estimatesmore

aligned with the observations. The tests of directed separation explicitly

identify and testwhether each piece ofmissing information (eachmiss-

ingpath) could change theoverallmodel’s interpretation. Twovariables

are d-separated if they are statistically independent, conditional on

their joint influences. In summary, if a considerable proportion of the

variance is explained in all endogenous variables and there are signif-

icant path coefficients, it follows that the residual error is low, so it is

safe to assume that no other variables could clarify the model struc-

ture further. Consequently, each SEM is adjusted considering three

parameters: degree to which the model is unsaturated (df > 0), global

goodness of fit (sufficiently lowC: p> 0.05), and nomissing paths (tests

of directed separation: p> 0.05).

We operationalized our main hypothesis of a mediating role of per-

ceptual representations on the effects of stimulus properties on liking

as the SEM structure belowd comprising three linear mixed-effects

models corresponding with each specific hypothesis (1−3):

1. percept ∼ MUST measure

2. unpredictability ∼ IC + percept

3. liking ∼ MUST measure + IC + percept +

unpredictability e

In other words, we expected that:

1. Each MUST measure would predict the corresponding perceptual

representation (denoted as percept in the SEM structure) of the

feature-based property varied in each subset (balance, contour,

symmetry, or complexity),

2. IC and those perceptual representations would predict unpre-

dictability, and

3. Perceptual representations of feature-based (perceived imbalance,

jaggedness, asymmetry, or complexity) and information-based

(perceived unpredictability) properties would impact liking. Includ-

ing the measures of stimulus properties (MUST measure and IC)

d We outline the fixed effects only because the random effects per participant correspond to

the structural properties included as predictors: MUSTmeasure for models 1 and 3 and IC for

models 2 and 3.
e Analyses not reported here for the sake of conciseness confirmed a better fit to the data of

this configuration over the reverse pathway.
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allowed us to test for their direct, indirect, or null effects, entailing

either no, partial, or total mediation of the perceptual representa-

tions, respectively.

Following Barr and colleagues’64 suggestion, we applied linear

mixed-effects analyses to model the maximal random-effects struc-

ture justified by the experimental design to prevent power loss, reduce

type-I error, and enable the generalizability of results to other partici-

pants and stimuli. Thus, themodels included the stimulus properties as

fixed effects, and intercepts and slopes per participant and intercepts

per stimulus as random effects to account for the variability within and

between participants and stimuli. The difference between conditional

and marginal coefficients of determination quantifies the relevance of

such variability. We performed a stepwise model reduction through

likelihood-ratio tests. For statistically significant differences (p< 0.05),

lower Akaike information criterion indicates a better fit of one model

over another. For conciseness, we report the best-fitting models of

data in each subset. Additionally, we tested whether removing random

effects significantly worsened themodel fit.

All analyses were performed within the R environment for statisti-

cal computing, R version 4.2.3.65 We implemented the SEM analysis in

R using the psem and plot functions in the “piecewiseSEM” package,

version 2.3.0.66 The psem output includes unstandardized and stan-

dardized estimates for each predictor (allowing comparisons within

and between models), statistical significance and coefficients of deter-

mination (r2) for the fixed effects only (marginal), and fixed plus random

effects (conditional) regarding each response variable. We interpret r2

according toChin.67 For the internalmixed-effectsmodels,weused the

glmmTMB function in the “glmmTMB” package68 fitted using maximum

likelihood estimation via the TMB (Template Model Builder) algorithm

because of its flexible architecture. In all models, the MUST composite

measures were centered (subtracting the variable means) and scaled

(dividing by the standard deviations) using the scale function in the

“base” R package.

RESULTS

The results of the best-fitting SEM for each subset are shown in

Figure 2 and Table 1. The analyses reveal consistencies in the struc-

ture of relationships across subsets: (1) the stimulus properties

impacted their perceptual representations, (2) which influenced per-

ceived unpredictability, (3) which in turn affected liking. Nevertheless,

the effects of stimulus properties varied between subsets: IC only

affected perceived imbalance and complexity, and stimulus complex-

ity (KC) was the only stimulus property directly influencing liking.

That is, perceptual representations fully mediated the effects of IC,

balance, contour, and symmetry and partially mediated the effects

of stimulus complexity. In addition, perceived unpredictability fully

mediated the influence of perceived jaggedness, asymmetry, and com-

plexity, whereas perceived imbalance mediated the effects of stimulus

imbalance (BC) and IC on liking.

Across models, the random effects explain a substantial proportion

of the variance, most of it in the models of perceived unpredictabil-

ity and liking. Likelihood-ratio tests show statistical superiority (all ps

< 0.01) of the full models over models excluding any random effects

(Table 2). Moreover, removing the random effects per participant in

the Contour subset or per stimulus across subsets makes the SEMs

unacceptable (p< 0.05) as they involvemissing paths.

DISCUSSION

We sought to understand the role of perceptual representations in

mediating the effects of stimulus properties (balance, contour, symme-

try, and complexity) on liking for Western melodies carefully selected

to vary systematically in those properties. SEM revealed a consistent

relational network in which stimulus properties influenced the per-

ceptual representation of those properties, which in turn influenced

perceived predictability, which in turn predicted liking, consistent with

our hypotheses. In other words, stimulus symmetry, contour, and com-

plexity influenced perception of symmetry, contour, and complexity,

respectively,which in turn influencedperceivedunpredictability,which

in turn influenced liking. However, there were variations in this net-

work of influences for balance, in which perceived balance (rather than

predictability) played the mediating role, and for complexity, in which

stimulus complexity also directly impacted liking (rendering the medi-

ating effect of perceived complexity and predictability only partial).

The direction and magnitude of the mediation effects were consis-

tent across subsets, suggesting that the characterization of perceived

unpredictability and its relation to liking were relatively robust to the

feature-basedmanipulations.

A notable contribution of this study is to demonstrate the impor-

tance of perceived unpredictability in liking for melodies from the

repertoire. Perceived unpredictability drove liking for melodies across

variation in contour, symmetry, or complexity, fullymediating the influ-

ence of perceptual representations of stimulus contour and symmetry

and partially mediating the influence of stimulus complexity. Huron32

proposed that the effect of familiarity on liking, as evidenced in the

mere exposure effect69 and in studies with musical stimuli (see Ref.

70 for a review), actually reflects an effect of predictability, since with

repeated exposure stimuli become more predictable. Furthermore,

quantitive information-theoretic conceptions of stimulus complexity

have been shown to predict both perceived complexity38,71 and liking

for music9,36,38 as well as nonmusical auditory stimuli.72−74 However,

the present results suggest a higher-level characterizationof perceived

unpredictability in which stimuli that are perceived as being more

unbalanced, asymmetric, jagged aswell asmore complex are perceived

as beingmore unpredictable.

IC did have an indirect effect on perceived predictability and liking

through its influence on the perception and appreciation of balance

and complexity. Regarding the former, IC and stimulus balance (BC)

influenced perceived balance, which fully mediated the effect of these

stimulus properties on liking. In other words, perceived balance was
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IC

Liking

Balance subset Contour subset

Symmetry subset Complexity subset

Perceived unpredictability

Perceived imbalance

CC

IC

Liking

Perceived unpredictability

Perceived jaggedness

SC

IC

Liking

Perceived unpredictability

Perceived asymmetry

KC

IC

Liking

Perceived unpredictability

Perceived complexity

0.20

0.26

0.54
-0.11

-0.03

0.34

0.34
-0.10

0.23

0.54

0.50

0.12

0.03

0.29

0.49

-0.07 -0.12

Stimulus 
properties
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properties

Perceptual 
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Appreciation

F IGURE 2 Structure of relations between stimulus information content (IC), imbalance (BC), jaggedness (CC), asymmetry (SC), and complexity
(KC) as assessed by theMUSTmeasures, perceived unpredictability, imbalance, jaggedness, asymmetry, and complexity, and liking for stimuli in
each NatMUST subset. Solid arrows represent statistically significant effects (p< 0.05), whereas dashed gray arrows denote paths without
statistical significance (p≥ 0.05). Numbers correspond to standardized estimates.

TABLE 1 Structure of relations between stimulus properties, their perceptual representations, and liking.

Subset C p df Response r2m r2c Predictor b se cv p ß

Balance 15.94 0.10 10 Imbalance 0.11 0.38 IC 0.56 0.27 2.04 0.04 0.20

BC 0.34 0.13 2.59 0.01 0.26

Unpredictability 0.31 0.41 Imbalance 0.47 0.02 22.78 < 0.01 0.54

Liking 0.01 0.30 Imbalance −0.07 0.02 −4.02 < 0.01 −0.10

Contour 14.46 0.15 10 Jaggedness 0.12 0.35 CC 0.42 0.09 4.63 < 0.01 0.34

Unpredictability 0.12 0.36 IC −0.05 0.11 −0.43 0.67 −0.03

Jaggedness 0.33 0.02 13.64 < 0.01 0.34

Liking 0.01 0.39 Unpredictability −0.08 0.02 −3.98 < 0.01 −0.10

Symmetry 11.13 0.35 10 Asymmetry 0.08 0.26 SC 0.36 0.07 4.88 < 0.01 0.28

Unpredictability 0.24 0.41 IC 0.06 0.12 0.55 0.58 0.03

Asymmetry 0.45 0.02 22.73 < 0.01 0.48

Liking 0.01 0.41 Unpredictability −0.06 0.02 −3.26 0.01 −0.07

Complexity 5.40 0.72 8 Complexity 0.53 0.70 IC 0.43 0.18 2.36 0.02 0.23

KC 0.70 0.13 5.47 < 0.01 0.54

Unpredictability 0.25 0.43 Complexity 0.46 0.03 15.05 < 0.01 0.50

Liking 0.02 0.36 KC 0.12 0.06 2.08 0.04 0.12

Unpredictability −0.10 0.02 −4.12 < 0.01 −0.12

Note: Structural equationmodels (SEMs) of liking formusical imbalance (BC), jaggedness (CC), asymmetry (SC), complexity (KC), IDyOMLTM log-scaled total

information content (IC), and perceived imbalance, jaggedness, asymmetry, complexity, and unpredictability. For each model per subset, C refers to Fisher’s

C, p to p-value, and df to degrees of freedom. Marginal (r2m) and conditional (r2c) coefficients of determination are reported for each predictor. b stands for
raw estimate, ß for standard estimate, se for standard error, df for degrees of freedom, cv for critical value, and p for p-value. Statistically significant effects (p
≤ 0.05) are highlighted in bold.
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TABLE 2 Likelihood-ratio tests of relevance of random effects.

Subset Model - RE | participant - RE | stimulus

Balance 12,366.32 12,715.12 12,899.61

Contour 12,660.20 13,164.95 13,293.05

Symmetry 13,584.18 14,163.98 14,109.86

Complexity 9786.82 10,287.14 10,184.54

Note: Akaike information criterion (AIC) for eachmodel configuration in each subset. Removing the randomeffects per stimulus (- RE | stimulus) or participant

(- RE | participant) significantly worsens themodel fit across subsets and random effects: all ps< 0.05.

influenced by both the measure of stimulus balance (BC) that was

used to construct the stimuli—essentially how unevenly distributed

the events are toward the beginning or end of the stimulus—and

the information-theoretic unpredictability of the timing and pitch

of the events making up the stimulus. Regarding complexity, both

feature-based complexity (KC) and information-based complexity (IC)

influenced perceived complexity, pointing to the intertwined but also

distinct nature of the two constructs. IC reflects more complex higher-

order schematic models of stylistic pitch and rhythmic structure than

KC but lacks the measure of event density that is included in KC.

The absence of other effects of IC on perceived unpredictability sug-

gests that IC (reflecting stylistic unpredictability) was controlled when

manipulating contour and symmetry38 and that other factors (jagged-

ness and asymmetry) drove perceived unpredictability. These findings

add to the literature on the relevance of predictive processing music

appreciation,32 underscoring the distinction between information-

based stimulus unpredictability and perceived unpredictability—the

former, when sufficiently varied, may influence the latter but is just

one of several influences—and the preeminence of the latter in directly

influencing liking.

Divergences from previous findings (i.e., significant group effects of

the stimulus properties on liking in, e.g., Refs. 8, 12, and 16, but not

here) may reflect differences in stimuli and experimental settings. We

used naturalistic melodies covering a wide range of Western musical

periods and styles, examining relations between stimulus properties,

their perceptual representations, and liking (cf., Refs. 8 and 16), and

we factored in variability between and within participants and stim-

uli (cf., Refs. 9 and 36). It is possible that the greater variability in

our stimulus set created greater opportunity for individual differences

in liking and relationships with (perception of) stimulus properties.

Further research should examine this possibility and also extend the

research to other stimulus properties (e.g., consonance, harmonicity,

grammaticality), their perceptual representations, perceived unpre-

dictability, and liking for these and other stimuli. To facilitate this, the

computational measures of stimulus properties (BC, SC, CC, KC, and

IC) developed and deployed in this research can all be applied to other

melodic stimuli using software provided in the online repositories (see

Materials section).

The random effects explained the largest proportion of the variance

in most internal models (especially liking) and removing them wors-

ened the SEM fit consistently across subsets. Therefore, accounting for

variability between andwithin participants and stimuli was essential to

unveil the relations between stimulus properties, their perceptual rep-

resentations, and liking. Indeed, systematic assessments have shown

that most variance explained in judgments of hedonic value reflect dif-

ferences between and within individuals.48−51 In the realm of music,

research has also explicitly examined individual variability in apprecia-

tion (e.g., Ref. 75) and the extent to which it is explained by other traits

(e.g., Ref. 76). The present study is particularly illustrative as it yields

null group-level effects of stimulus properties on appreciation but sig-

nificant individual effects revealed by randomeffects. Therefore, these

findings emphasize the perils of neglecting individual differences.16,50

Together, these contributions mean that we cannot assume a direct

relationship between stimulus properties and pleasurable responses

but must first consider how those stimulus properties are perceived

and represented,whichmay vary between individuals. For example,we

might find a relationship of increasing liking with increasing symmetry,

butwhenwe lookat the stimulus ratings,wemight find that all the stim-

uli are rated as being asymmetric, so the relationship should really be

cast as increasing liking with decreasing asymmetry. Or we might find

that different participants scale their representations of stimulus prop-

erties. For instance, the region of subjective complexity corresponding

to “relatively complex” for one individual might correspond to “rel-

atively simple” for another individual. In addition to these individual

differences in the representation of stimulus properties, the present

results also suggest individual differences in the relationship between

representations and liking. One participant might show a positive rela-

tionship between liking and complexity (i.e., a preference for greater

complexity), while another might show a decreasing relationship (i.e.,

a preference for lower complexity). Or participants might show non-

linear relationships between stimulus representations and liking such

as the inverted-U-shaped relationship (whose apexmight differ among

individuals). This paints a picture of a much more complex process of

appreciation than has typically been reflected in prior research that

focused either on stimulus properties or subjective ratings in isolation.

Limitations

We ensured that the stimuli were entirely unfamiliar to participants

by removing approximately 25% of the data. This strategy minimized

the effects of veridical knowledge based on episodic memories of the

music. However, familiarity effects (linked to schematic knowledge;

e.g., see Refs. 77 and 78) cannot be completely eliminated due to a
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familiar tuning systembeing used and the fact that knowledge ofWest-

ern harmony and modes in melodies is embedded in our participants,

all belonging to Western, educated, industrial, rich and democratic

(WEIRD) countries.79 More importantly, this entailed that the par-

ticipants contributed differently to the models, and the datasets for

different subsets had unequal sizes. The sample size was sufficiently

large to accommodate such differences between conditions, but repli-

cation with equal individual contributions to all dimensions would help

to dispel any doubt.

The experimental paradigm precluded contamination between per-

ceptual and liking ratings, but contamination between perceptual

ratings could not be prevented. Hence, caution is warrantedwhen con-

sidering the role of perceived unpredictability. However, the structure

of relations and the effects of perceived unpredictability were robust

to our block design intended to enhance the effects of feature-based

variability in each subset. Nevertheless, further research is necessary

to disentangle potential contamination from the genuine effects sug-

gested by the results and to elucidate the nature of these relations in a

randomized design.

We recruited remote cohorts of adults in predominantly English-

speaking countries, which involves well-known caveats concerning

WEIRDsamples, internet access, andwillingness to join a paid research

pool. However, theNatMUSTwas designedwith a broadWestern pop-

ulation in mind. Hence, the universe of stimuli from which the present

set was selected matches the common cultural and educational affor-

dances of a broad range of participants acculturated inWesternmusic.

This strategy minimized local cultural biases affecting our hypothe-

ses. The stimuli used represent broadly only one category of music,

namely, Western classical, albeit with a vast variety of periods and

styles covered.

As for any behavioral study, the present research relies on explicit

ratings that may entail demand effects and, in the case of liking, may

not fully represent feelings of pleasure. And importantly, previous

research (e.g., Refs. 43 and 80) has demonstrated that preference and

pleasantness may indeed be understood as disjoint concepts in music

perception. However, the participantswere instructed to rate the stim-

uli according to their perceptual representations and internal feelings

of pleasure, interest, enjoyment, and desirability evoked or elicited by

the stimulus.

Finally, although SEM analyses purport to yield causal links, they

rely on correlational associations. Causal experimental paradigms are

necessary to demonstrate causal relationships.

CONCLUSION

The present research pioneers a systematic investigation of the

relationships between stimulus information, its perceptual represen-

tations, and the pleasure we get from perceiving. In so doing, it

contributesnewopen resources for researchandyields two fundamen-

tal empirical findings: First, it unveils a mediating role of perceptual

representations in the impact of stimulus properties (stimulus bal-

ance, contour, symmetry, complexity, and unpredictability) upon liking

for melodic excerpts. Second, it demonstrates the central relevance

of variability due to participants and stimuli, typically disregarded

as noise in the literature, to understand perceptual and evaluative

mechanisms. Both findings align with growing research supporting the

situated nature of appreciation—according to which the pleasure of

perceiving is driven by how sensory information is processed in the

brain, considering the individual’s current state, goals, expectations,

and context1—and goes a step further in testing howparticular aspects

of sensory information are represented and what their relevance is for

evaluative judgments such as liking.
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