Abstract
In episodic encoding, an unfolding experience is rapidly transformed into a memory representation that binds separate episodic elements into a memory form to be later recollected. However, it is unclear how brain activity changes over time to accommodate the encoding of incoming information. This study aimed to investigate the dynamics of the representational format that contributed to memory formation of sequential episodes. We combined representational similarity analysis and multivariate decoding approaches on EEG data to compare whether “category-level” or “item-level” representations supported memory formation during the online encoding of a picture triplet sequence and offline, in the period that immediately followed encoding. The findings revealed a gradual integration of category-level representation during the online encoding of the picture sequence and a rapid item-based neural reactivation of the encoded sequence at the episodic offset. However, we found that only memory reinstatement at episodic offset was associated with successful memory retrieval from long-term memory. These results suggest that post-encoding memory reinstatement is crucial for the rapid formation of unique memory for episodes that unfold over time. Overall, the study sheds light on the dynamics of representational format changes that take place during the formation of episodic memories.